Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

Related tags

Deep LearningTEQS
Overview

TEQS

Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has no QC knowledge and put through a five day crash course that puts them in the frame of mind necessary to learn via formal texts such as Nielsen and Chuang (which is the prize of our two day hackathon!)

TEQS Prerequisites

One of the beauties behind learning quantum computing is that on an elementary level, very few pre-requisites are required. At TEQS, the course is designed in a way where the only pre-requisites required are basic linear algebra and classical information processing. To ensure that everyone has those under their belts before attending the crash course, we made those three notebooks which we encourage everyone to read and solve the exercises.

  • Chapter 1 is on vectors and how they are used to represent the state of a qubit
  • Chapter 2 is on operators and how they are used to manipulate the state of a qubit
  • Chapter 3 is on Classical Information and Boolean Logic

Module Requirements

Lectures

Day 1:

Overview of mathematical prerequisites, brief introduction to quantum states and operators, and classical computing. Content available here.

Day 2:

Reduced quantum postulates from a quantum computing perspective and introduction to basic quantum circuits and simulators using Qiskit. Content available here.

Day 3:

The no-cloning theorem, quantum teleportation protocol, superdense coding, and BB84 cryptographic protocol. Content available here.

Day 4:

Quantum oracles, Deutsch's algorithm and how to construct a quantum circuit that implements them. Content available here.

Day 5:

IBM Quantum Fun Day! Introduction to RasQberry and Question and Answer Panel. Content available here.

Hackathon!

Welcome to the Eigensolvers Quantum School Hackathon! In the notebook found in this folder there are 4 problems covering all the material covered in the lectures. These problems have been designed for people coming from all different levels of experience in quantum computing. You will get a different certificate level based on the problems you completed:

  • First two: Beginner
  • First three: Intermediate
  • All four: Advanced

There are also prizes for the winners of the hackathon:

  • First Place: RasQberry - Premium
  • Second Place: RasQberry - All Inclusive
  • Third Place: RasQberry - Customizable DIY Kit
  • Fourth Place: Nielsen and Chuang

The ranking will be based on the weighted cost of the solutions for problem 3 and problem 4; as defined in the notebook.

To submit your solutions, fill out the form below, with the code that you write for each problem. https://forms.gle/KkA6gBbhrCZpWgnX8

The deadline for submission is Sunday (July 11th) 7pm Indian Standard Time. Remember, the ultimate goal is to have fun and learn some quantum computing while you're at it. All the best!

Owner
The Eigensolvers
The Eigensolvers
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Xintao 1.4k Dec 25, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022