Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

Related tags

Deep LearningTEQS
Overview

TEQS

Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has no QC knowledge and put through a five day crash course that puts them in the frame of mind necessary to learn via formal texts such as Nielsen and Chuang (which is the prize of our two day hackathon!)

TEQS Prerequisites

One of the beauties behind learning quantum computing is that on an elementary level, very few pre-requisites are required. At TEQS, the course is designed in a way where the only pre-requisites required are basic linear algebra and classical information processing. To ensure that everyone has those under their belts before attending the crash course, we made those three notebooks which we encourage everyone to read and solve the exercises.

  • Chapter 1 is on vectors and how they are used to represent the state of a qubit
  • Chapter 2 is on operators and how they are used to manipulate the state of a qubit
  • Chapter 3 is on Classical Information and Boolean Logic

Module Requirements

Lectures

Day 1:

Overview of mathematical prerequisites, brief introduction to quantum states and operators, and classical computing. Content available here.

Day 2:

Reduced quantum postulates from a quantum computing perspective and introduction to basic quantum circuits and simulators using Qiskit. Content available here.

Day 3:

The no-cloning theorem, quantum teleportation protocol, superdense coding, and BB84 cryptographic protocol. Content available here.

Day 4:

Quantum oracles, Deutsch's algorithm and how to construct a quantum circuit that implements them. Content available here.

Day 5:

IBM Quantum Fun Day! Introduction to RasQberry and Question and Answer Panel. Content available here.

Hackathon!

Welcome to the Eigensolvers Quantum School Hackathon! In the notebook found in this folder there are 4 problems covering all the material covered in the lectures. These problems have been designed for people coming from all different levels of experience in quantum computing. You will get a different certificate level based on the problems you completed:

  • First two: Beginner
  • First three: Intermediate
  • All four: Advanced

There are also prizes for the winners of the hackathon:

  • First Place: RasQberry - Premium
  • Second Place: RasQberry - All Inclusive
  • Third Place: RasQberry - Customizable DIY Kit
  • Fourth Place: Nielsen and Chuang

The ranking will be based on the weighted cost of the solutions for problem 3 and problem 4; as defined in the notebook.

To submit your solutions, fill out the form below, with the code that you write for each problem. https://forms.gle/KkA6gBbhrCZpWgnX8

The deadline for submission is Sunday (July 11th) 7pm Indian Standard Time. Remember, the ultimate goal is to have fun and learn some quantum computing while you're at it. All the best!

Owner
The Eigensolvers
The Eigensolvers
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments πŸ˜€ πŸ˜ƒ πŸ˜† Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Implementation of the algorithm shown in the article "Modelo de PredicciΓ³n de Γ‰xito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de PredicciΓ³n de Γ‰xito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022