The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

Overview

CrossFormer

This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

Introduction

Existing vision transformers fail to build attention among objects/features of different scales (cross-scale attention), while such ability is very important to visual tasks. CrossFormer is a versatile vision transformer which solves this problem. Its core designs contain Cross-scale Embedding Layer (CEL), Long-Short Distance Attention (L/SDA), which work together to enable cross-scale attention.

CEL blends every input embedding with multiple-scale features. L/SDA split all embeddings into several groups, and the self-attention is only computed within each group (embeddings with the same color border belong to the same group.).

Further, we also propose a dynamic position bias (DPB) module, which makes the effective yet inflexible relative position bias apply to variable image size.

Now, experiments are done on four representative visual tasks, i.e., image classification, objection detection, and instance/semantic segmentation. Results show that CrossFormer outperforms existing vision transformers in these tasks, especially in dense prediction tasks (i.e., object detection and instance/semantic segmentation). We think it is because image classification only pays attention to one object and large-scale features, while dense prediction tasks rely more on cross-scale attention.

Prerequisites

  1. Libraries (Python3.6-based)
pip3 install numpy scipy Pillow pyyaml torch==1.7.0 torchvision==0.8.1 timm==0.3.2
  1. Dataset: ImageNet

  2. Requirements for detection/instance segmentation and semantic segmentation are listed here: detection/README.md or segmentation/README.md

Getting Started

Training

## There should be two directories under the path_to_imagenet: train and validation

## CrossFormer-T
python -u -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/tiny_patch4_group7_224.yaml \
--batch-size 128 --data-path path_to_imagenet --output ./output

## CrossFormer-S
python -u -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/small_patch4_group7_224.yaml \
--batch-size 128 --data-path path_to_imagenet --output ./output

## CrossFormer-B
python -u -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/base_patch4_group7_224.yaml 
--batch-size 128 --data-path path_to_imagenet --output ./output

## CrossFormer-L
python -u -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/large_patch4_group7_224.yaml \
--batch-size 128 --data-path path_to_imagenet --output ./output

Testing

## Take CrossFormer-T as an example
python -u -m torch.distributed.launch --nproc_per_node 1 main.py --cfg configs/tiny_patch4_group7_224.yaml \
--batch-size 128 --data-path path_to_imagenet --eval --resume path_to_crossformer-t.pth

Training scripts for objection detection: detection/README.md.

Training scripts for semantic segmentation: segmentation/README.md.

Results

Image Classification

Models trained on ImageNet-1K and evaluated on its validation set. The input image size is 224 x 224.

Architectures Params FLOPs Accuracy Models
ResNet-50 25.6M 4.1G 76.2% -
RegNetY-8G 39.0M 8.0G 81.7% -
CrossFormer-T 27.8M 2.9G 81.5% Google Drive/BaiduCloud, key: nkju
CrossFormer-S 30.7M 4.9G 82.5% Google Drive/BaiduCloud, key: fgqj
CrossFormer-B 52.0M 9.2G 83.4% Google Drive/BaiduCloud, key: 7md9
CrossFormer-L 92.0M 16.1G 84.0% TBD

More results compared with other vision transformers can be seen in the paper.

Objection Detection & Instance Segmentation

Models trained on COCO 2017. Backbones are initialized with weights pre-trained on ImageNet-1K.

Backbone Detection Head Learning Schedule Params FLOPs box AP mask AP
ResNet-101 RetinaNet 1x 56.7M 315.0G 38.5 -
CrossFormer-S RetinaNet 1x 40.8M 282.0G 44.4 -
CrossFormer-B RetinaNet 1x 62.1M 389.0G 46.2 -
ResNet-101 Mask-RCNN 1x 63.2M 336.0G 40.4 36.4
CrossFormer-S Mask-RCNN 1x 50.2M 301.0G 45.4 41.4
CrossFormer-B Mask-RCNN 1x 71.5M 407.9G 47.2 42.7

More results and pretrained models for objection detection: detection/README.md.

Semantic Segmentation

Models trained on ADE20K. Backbones are initialized with weights pre-trained on ImageNet-1K.

Backbone Segmentation Head Iterations Params FLOPs IOU MS IOU
CrossFormer-S FPN 80K 34.3M 209.8G 46.4 -
CrossFormer-B FPN 80K 55.6M 320.1G 48.0 -
CrossFormer-L FPN 80K 95.4M 482.7G 49.1 -
ResNet-101 UPerNet 160K 86.0M 1029.G 44.9 -
CrossFormer-S UPerNet 160K 62.3M 979.5G 47.6 48.4
CrossFormer-B UPerNet 160K 83.6M 1089.7G 49.7 50.6
CrossFormer-L UPerNet 160K 125.5M 1257.8G 50.4 51.4

MS IOU means IOU with multi-scale testing.

More results and pretrained models for semantic segmentation: segmentation/README.md.

Citing Us

@article{crossformer2021,
  title     = {CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention},
  author    = {Wenxiao Wang and Lu Yao and Long Chen and Deng Cai and Xiaofei He and Wei Liu},
  journal   = {CoRR},
  volume    = {abs/2108.00154},
  year      = {2021},
}

Acknowledgement

Part of the code of this repository refers to Swin Transformer.

Owner
cheerss
cheerss
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022