Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Related tags

Deep LearningINADE
Overview

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021)

Architecture

Paper

Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu, [Bin Liu], Gang Hua, Nenghai Yu

Abstract

Semantic image synthesis, translating semantic layouts to photo-realistic images, is a one-to-many mapping problem. Though impressive progress has been recently made, diverse semantic synthesis that can efficiently produce semantic-level multimodal results, still remains a challenge. In this paper, we propose a novel diverse semantic image synthesis framework from the perspective of semantic class distributions, which naturally supports diverse generation at semantic or even instance level. We achieve this by modeling class-level conditional modulation parameters as continuous probability distributions instead of discrete values, and sampling per-instance modulation parameters through instance-adaptive stochastic sampling that is consistent across the network. Moreover, we propose prior noise remapping, through linear perturbation parameters encoded from paired references, to facilitate supervised training and exemplar-based instance style control at test time. Extensive experiments on multiple datasets show that our method can achieve superior diversity and comparable quality compared to state-of-the-art methods.

Installation

Clone this repo.

git clone https://github.com/tzt101/INADE.git
cd INADE/

This code requires PyTorch 1.6 and python 3+. Please install dependencies by

pip install -r requirements.txt

Dataset Preparation

The Cityscapes and ADE20K dataset can be downloaded and prepared following SPADE. The CelebAMask-HQ can be downloaded from CelebAMask-HQ, you need to to integrate the separated annotations into an image file (the format like other datasets, e.g. Cityscapes and ADE20K). The DeepFashion can be downloaded from SMIS, and the version with two persons can be downloaded from OneDrive.

To make or reid the instance map, you can use the following commands:

python make_instances.py --path [Path_to_dataset] --dataset [ade20k | cityscapes | celeba | deepfashion]

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the pretrained models from the OneDrive, save it in checkpoints/. The structure is as follows:
./checkpoints/
    inade_ade20k/
        best_net_G.pth
        best_net_IE.pth
    inade_celeba/
        best_net_G.pth
        best_net_IE.pth
    inade_cityscapes/
        best_net_G.pth
        best_net_IE.pth
    inade_deepfashion/
        best_net_G.pth
        best_net_IE.pth

The noise_nc is 64 for all pretrained models except which on deepfashion (set to 8). Because we find that it's enough for quality and diversity.

  1. Generate the images on the test dataset.
python test.py --name [model_name] --norm_mode inade --batchSize 1 --gpu_ids 0 --which_epoch best --dataset_mode [dataset] --dataroot [Path_to_dataset]

[model_name] is the directory name of the checkpoint file downloaded in Step 1, such as inade_ade20k and inade_cityscapes. [dataset] can be on of ade20k, celeba, cityscapes and deepfashion. [Path_to_dataset] is the path to the dataset. If you want to use encoder, you can add the another option --use_vae.

Training New Models

You can train your own model with the following command:

# To train CLADE and CLADE-ICPE.
python train.py --name [experiment_name] --dataset_mode [dataset] --norm_mode inade --use_vae --dataroot [Path_to_dataset]

If you want to test the model during the training step, please set --train_eval. By default, the model every 10 epoch will be test in terms of FID. Finally, the model with best FID score will be saved as best_net_G.pth.

Calculate FID

We provide the code to calculate the FID which is based on rpo. We have pre-calculated the distribution of real images (all images are resized to 256×256 except cityscapes is 512×256) in training set of each dataset and saved them in ./datasets/train_mu_si/. You can run the following command:

python fid_score.py [Path_to_real_image] [Path_to_fake_image] --batch-size 1 --gpu 0 --load_np_name [dataset] --resize_size [Size]

The provided [dataset] are: ade20k, celeba, cityscapes, coco and deepfashion. You can save the new dataset by replacing --load_np_name [dataset] with --save_np_name [dataset].

New Useful Options

The new options are as follows:

  • --use_amp: if specified, use AMP training mode.
  • --train_eval: if sepcified, evaluate the model during training.
  • --eval_dims: the default setting is 2048, Dimensionality of Inception features to use.
  • --eval_epoch_freq: the default setting is 10, frequency of calculate fid score at the end of epochs.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • trainers/pix2pix_trainer.py: harnesses and reports the progress of training.
  • models/pix2pix_model.py: creates the networks, and compute the losses
  • models/networks/: defines the architecture of all models
  • options/: creates option lists using argparse package. More individuals are dynamically added in other files as well. Please see the section below.
  • data/: defines the class for loading images and label maps.

Citation

If you use this code for your research, please cite our papers.

@inproceedings{tan2021diverse,
  title={Diverse Semantic Image Synthesis via Probability Distribution Modeling},
  author={Tan, Zhentao and Chai, Menglei and Chen, Dongdong and Liao, Jing and Chu, Qi and Liu, Bin and Hua, Gang and Yu, Nenghai},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7962--7971},
  year={2021}
}

Acknowledgments

This code borrows heavily from SPADE.

unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022