Lite-HRNet: A Lightweight High-Resolution Network

Overview

LiteHRNet Benchmark

🔥 🔥 Based on MMsegmentation 🔥 🔥

Cityscapes

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.81 80.6 10 71.81 80.6 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_320k_cityscapes 71.96 80.43 10 71.96 80.43 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_640k_cityscapes 69.29 78.91 8 69.29 78.91 8 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_160k_cityscapes 68.99 77.63 10 68.99 77.63 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.42 78.72 10 70.42 78.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_640k_cityscapes 67.12 75.84 7 67.12 75.84 7 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_160k_cityscapes 73.81 82.42 10 73.81 82.42 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.46 82.41 10 74.46 82.41 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.15 79.65 6 69.15 79.65 6 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.11 80.72 10 72.11 80.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.12 80.15 10 72.12 80.15 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_640k_cityscapes 67.31 77.76 5 67.31 77.76 5 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.49 79.95 10 71.49 79.95 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_320k_cityscapes 73.03 81.35 10 73.03 81.35 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_640k_cityscapes 68.06 76.67 8 68.26 77.17 7 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_160k_cityscapes 69.43 78.15 10 69.43 78.15 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.61 78.87 10 70.61 78.87 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_640k_cityscapes 63.83 73.11 4 63.83 73.11 4 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_160k_cityscapes 72.65 81.36 10 72.65 81.36 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.98 83.22 10 74.98 83.22 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.11 78.88 6 69.11 78.88 6 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.78 81.37 10 72.78 81.37 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.37 80.29 10 72.37 80.29 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_640k_cityscapes 63.53 74.6 4 65.91 75.91 3 log | 20210816_121228.log.json

ADE20k

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 16.15 22.12 2 16.15 22.12 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 24.2 31.67 10 24.2 31.67 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 26.17 34.86 10 26.17 34.86 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 16.89 22.96 2 16.89 22.96 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 24.71 32.46 10 24.71 32.46 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 16.77 22.89 2 16.77 22.89 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 26.81 34.96 10 26.81 34.96 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 16.37 22.7 2 16.37 22.7 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 24.38 32.52 10 24.38 32.52 10 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x512_160k_ade20k 0 0 0 0 0 0 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 23.82 31.51 10 23.82 31.51 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 24.14 31.81 10 24.14 31.81 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 12.23 17.0 2 12.23 17.0 2 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 20.82 27.58 10 20.82 27.58 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 21.98 29.06 10 21.98 29.06 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 14.11 19.06 3 14.11 19.06 3 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 24.06 31.78 10 24.06 31.78 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 14.37 19.21 3 14.37 19.21 3 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 25.22 32.67 10 25.22 32.67 10 log | 20210816_121228.log.json
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022