Lite-HRNet: A Lightweight High-Resolution Network

Overview

LiteHRNet Benchmark

🔥 🔥 Based on MMsegmentation 🔥 🔥

Cityscapes

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.81 80.6 10 71.81 80.6 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_320k_cityscapes 71.96 80.43 10 71.96 80.43 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_640k_cityscapes 69.29 78.91 8 69.29 78.91 8 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_160k_cityscapes 68.99 77.63 10 68.99 77.63 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.42 78.72 10 70.42 78.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_640k_cityscapes 67.12 75.84 7 67.12 75.84 7 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_160k_cityscapes 73.81 82.42 10 73.81 82.42 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.46 82.41 10 74.46 82.41 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.15 79.65 6 69.15 79.65 6 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.11 80.72 10 72.11 80.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.12 80.15 10 72.12 80.15 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_640k_cityscapes 67.31 77.76 5 67.31 77.76 5 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.49 79.95 10 71.49 79.95 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_320k_cityscapes 73.03 81.35 10 73.03 81.35 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_640k_cityscapes 68.06 76.67 8 68.26 77.17 7 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_160k_cityscapes 69.43 78.15 10 69.43 78.15 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.61 78.87 10 70.61 78.87 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_640k_cityscapes 63.83 73.11 4 63.83 73.11 4 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_160k_cityscapes 72.65 81.36 10 72.65 81.36 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.98 83.22 10 74.98 83.22 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.11 78.88 6 69.11 78.88 6 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.78 81.37 10 72.78 81.37 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.37 80.29 10 72.37 80.29 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_640k_cityscapes 63.53 74.6 4 65.91 75.91 3 log | 20210816_121228.log.json

ADE20k

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 16.15 22.12 2 16.15 22.12 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 24.2 31.67 10 24.2 31.67 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 26.17 34.86 10 26.17 34.86 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 16.89 22.96 2 16.89 22.96 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 24.71 32.46 10 24.71 32.46 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 16.77 22.89 2 16.77 22.89 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 26.81 34.96 10 26.81 34.96 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 16.37 22.7 2 16.37 22.7 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 24.38 32.52 10 24.38 32.52 10 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x512_160k_ade20k 0 0 0 0 0 0 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 23.82 31.51 10 23.82 31.51 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 24.14 31.81 10 24.14 31.81 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 12.23 17.0 2 12.23 17.0 2 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 20.82 27.58 10 20.82 27.58 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 21.98 29.06 10 21.98 29.06 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 14.11 19.06 3 14.11 19.06 3 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 24.06 31.78 10 24.06 31.78 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 14.37 19.21 3 14.37 19.21 3 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 25.22 32.67 10 25.22 32.67 10 log | 20210816_121228.log.json
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022