Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Overview

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

The code repository for "Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation" [paper, to appear] [slides, to appear] [poster, to appear] in PyTorch. If you use any content of this repo for your work, please cite the following bib entry:

@misc{Proto-CAT,
  author = {Yi-Kai Zhang},
  title = {Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ZhangYikaii/Proto-CAT}},
  commit = {main}
}

Prototype-based Co-Adaptation with Transformer

Illustration of Proto-CAT. The model transforms the classification space using [公式] based on two kinds of audio-visual prototypes (class centers): (1) the base training categories (color with [公式]blue, [公式]green, and [公式]pink); and (2) the additional novel test categories (color with [公式]burning transition). Proto-CAT learns and generalizes on novel test categories from limited labeled examples, maintaining performance on the base training ones. [公式] includes audio-visual level and category level prototype-based co-adaptation. From left to right, more coverage and more bright colors represent a more reliable classification space.

 

Results

Dataset LRW LRW-1000
Data Source Audio () Video () Audio-Video () Audio-Video ()
Perf. Measures on H-mean H-mean Base Novel H-mean Base Novel H-mean
LSTM-based 32.20 8.00 97.09 23.76 37.22 71.34 0.03 0.07
GRU-based 37.01 10.58 97.44 27.35 41.71 71.34 0.05 0.09
MS-TCN-based 62.29 19.06 80.96 51.28 61.76 71.55 0.33 0.63
ProtoNet-GFSL 39.95 14.40 96.33 39.23 54.79 69.33 0.76 1.47
FEAT-GFSL 49.90 25.75 96.26 54.52 68.83 71.69 2.62 4.89
DFSL 72.13 42.56 66.10 84.62 73.81 31.68 68.72 42.56
CASTLE 75.48 34.68 73.50 90.20 80.74 11.13 54.07 17.84
Proto-CAT (Ours) 84.18 74.55 93.37 91.20 92.13 49.70 38.27 42.25
Proto-CAT+ (Ours) 93.18 90.16 91.49 54.55 38.16 43.88

Audio-visual generalized few-shot learning classification performance (in %; measured over 10,000 rounds; higher is better) of 5-way 1-shot training tasks on LRW and LRW-1000 datasets. The best result of each scenario is in bold font. The performance measure on both base and novel classes (Base, Novel in the table) is mean accuracy. Harmonic mean (i.e., H-mean) of the above two is a better generalized few-shot learning performance measure.

 

Prerequisites

Environment

Please refer to requirements.txt and run:

pip install -r requirement.txt

Dataset

  • Use preprocessed data (suggested):

    LRW and LRW-1000 forbid directly share the preprocessed data.

  • Use raw data and do preprocess:

    Download LRW Dataset and unzip, like,

    /your data_path set in .sh file
    ├── lipread_mp4
    │   ├── [ALL CLASS FOLDER]
    │   ├── ...
    

    Run prepare_lrw_audio.py and prepare_lrw_video.py to preprocess data on video and audio modality, respectively. Please modify the data path in the above preprocessing file in advance.

    Similarly, Download LRW-1000 dataset and unzip. Run prepare_lrw1000_audio.py and prepare_lrw1000_video.py to preprocess it.

Pretrained Weights

We provide pretrained weights on LRW and LRW-1000 dataset. Download from Google Drive or Baidu Yun(password: 3ad2) and put them as:

/your init_weights set in .sh file
├── Conv1dResNetGRU_LRW-pre.pth
├── Conv3dResNetLSTM_LRW-pre.pth
├── Conv1dResNetGRU_LRW1000-pre.pth
├── Conv3dResNetLSTM_LRW1000-pre.pth

 

How to Train Proto-CAT

For LRW dataset, fine-tune the parameters in run/protocat_lrw.sh, and run:

cd ./Proto-CAT/run
bash protocat_lrw.sh

Similarly, run bash protocat_lrw1000.sh for dataset LRW-1000.

Run bash protocat_plus_lrw.sh / bash protocat_plus_lrw1000.sh to train Proto-CAT+.

How to Reproduce the Result of Proto-CAT

Download the trained models from Google Drive or Baidu Yun(password: swzd) and run:

bash test_protocat_lrw.sh

Run bash test_protocat_lrw1000.sh, bash test_protocat_plus_lrw.sh, or bash test_protocat_plus_lrw1000.sh to evaluate other models.

 

Code Structures

Proto-CAT's entry function is in main.py. It calls the manager Trainer in models/train.py that contains the main training logic. In Trainer, prepare_handle.prepare_dataloader combined with train_prepare_batch inputs and preprocesses generalized few-shot style data. fit_handle controls forward and backward propagation. callbacks deals with the behaviors at each stage.

Arguments

All parameters are defined in models/utils.py. We list the main ones below:

  • do_train, do_test: Store-true switch for whether to train or test.
  • data_path: Data directory to be set.
  • model_save_path: Optimal model save directory to be set.
  • init_weights: Pretrained weights to be set.
  • dataset: Option for the dataset.
  • model_class: Option for the top model.
  • backend_type: Option list for the backend type.
  • train_way, val_way, test_way, train_shot, val_shot, test_shot, train_query, val_query, test_query: Tasks setting of generalized few-shot learning.
  • gfsl_train, gfsl_test: Switch for whether train or test in generalized few-shot learning way, i.e., whether additional base class data is included.
  • mm_list: Participating modalities.
  • lr_scheduler: List of learning rate scheduler.
  • loss_fn: Option for the loss function.
  • max_epoch: Maximum training epoch.
  • episodes_per_train_epoch, episodes_per_val_epoch, episodes_per_test_epoch: Number of sampled episodes per epoch.
  • num_tasks: Number of tasks per episode.
  • meta_batch_size: Batch size of each task.
  • test_model_filepath: Trained weights .pth file path when testing a model.
  • gpu: Multi-GPU option like --gpu 0,1,2,3.
  • logger_filename: Logger file save directory.
  • time_str: Token for each run, and will generate by itself if empty.
  • acc_per_class: Switch for whether to measure the accuracy of each class with base, novel, and harmonic mean.
  • verbose, epoch_verbose: Switch for whether to output message or output progress bar.
  • torch_seed, cuda_seed, np_seed, random_seed: Seeds of random number generation.

 

Acknowledgment

We thank the following repos providing helpful components/functions in our work.

Owner
Kaiaicy
Few-Shot Learning
Kaiaicy
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023