cisip-FIRe - Fast Image Retrieval

Overview

cisip-FIRe - Fast Image Retrieval

Documentation Status

Documentation: https://fast-image-retrieval.readthedocs.io/en/latest/

Introduction

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This framework implements most of the major binary hashing methods, together with different popular backbone networks and public datasets.

Major features

  • One for All

    Herein, we unified (i) various binary hashing methods, (ii) different backbone, and (iii) multiple datasets under a single framework to ease the research and benchmarking in this domain. It supports popular binary hashing methods, e.g. HashNet, GreedyHash, DPN, OrthoHash, etc.

  • Modularity

    We break the framework into parts so that one can easily implement their own method by joining up the components.

License

This project is released under BSD 3-Clause License.

Changelog

Please refer to Changelog for more detail.

Implemented method/backbone/datasets

Backbone

  1. Alexnet
  2. VGG{16}
  3. ResNet{18,34,50,101,152}

Loss (Method)

Supervised

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
ADSH adsh.yaml adsh 0.645
BiHalf bihalf-supervised.yaml bihalf-supervised 0.684
Cross Entropy ce.yaml ce 0.434
CSQ csq.yaml csq 0.686
DFH dfh.yaml dfh 0.689
DPN dpn.yaml dpn 0.692
DPSH dpsh.yaml dpsh 0.599
DTSH dtsh.yaml dtsh 0.608
GreedyHash greedyhash.yaml greedyhash 0.667
HashNet hashnet.yml hashnet 0.588
JMLH jmlh.yaml jmlh 0.664
OrthoCos(OrthoHash) orthocos.yaml orthocos 0.701
OrthoArc(OrthoHash) orthoarc.yaml orthoarc 0.698
SDH-C sdhc.yaml sdhc 0.639

Unsupervised

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
BiHalf bihalf.yaml bihalf 0.403
CIBHash cibhash.yaml cibhash 0.322
GreedyHash greedyhash-unsupervised.yaml greedyhash-unsupervised 0.407
SSDH ssdh.yaml ssdh 0.146
TBH tbh.yaml tbh 0.324

Shallow (Non-Deep learning methods)

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
ITQ itq.yaml itq 0.402
LsH lsh.yaml lsh 0.206
PCAHash pca.yaml pca 0.405
SH sh.yaml sh 0.350
Shallow methods only works with descriptor datasets. We will upload the descriptor datasets and 

Datasets

Dataset Name in framework
ImageNet100 imagenet100
NUS-WIDE nuswide
MS-COCO coco
MIRFLICKR/Flickr25k mirflickr
Stanford Online Product sop
Cars dataset cars
CIFAR10 cifar10

Installation

Please head up to Get Started Docs for guides on setup conda environment and installation.

Tutorials

Please head up to Tutorials Docs for guidance.

Reference

If you find this framework useful in your research, please consider cite this project.

@inproceedings{dpn2020,
  title={Deep Polarized Network for Supervised Learning of Accurate Binary Hashing Codes.},
  author={Fan, Lixin and Ng, Kam Woh and Ju, Ce and Zhang, Tianyu and Chan, Chee Seng},
  booktitle={IJCAI},
  pages={825--831},
  year={2020}
}

@inproceedings{orthohash2021,
  title={One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective},
  author={Hoe, Jiun Tian and Ng, Kam Woh and Zhang, Tianyu and Chan, Chee Seng and Song, Yi-Zhe and Xiang, Tao},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Contributing

We welcome the contributions to improve this project. Please file your suggestions/issues by creating new issues or send us a pull request for your new changes/improvement/features/fixes.

Owner
CISiP Lab
Center of Image and Signal Processing (CISiP) Lab
CISiP Lab
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022