Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Overview

Lane Follower

This code is for the lane follower, including perception and control, as shown below.

Structure

Environment

  1. Hardware
    • Industrial Camera
    • Intel-NUC(10FNK)
  2. Software
    • Ubuntu18.04
    • Python3.6
    • OpenCV4.2
    • PyTorch1.8.1

    See environment.txt for details.

How to use

A. Offline Testing

The code supports the offline testing, which takes the offline video as input and output the demo video.

python offline_test.py

B. OnLine Testing

The code also supports the online testing, which takes the real-time video streaming from the industrial camera as input and controls the vehicle.

python online_test.py

C. Demo

You can find the offline testing video and the corresponding demo video here [n25o].

demo

Details

Detailed structure

detailed-structure

Code Info

  • offline_test.py --- Offline testing

  • online_test.py --- Online testing

  • basic_function --- Some Basic Function

    • show_img(name, img): Show the image
    • find_files(directory, pattern): Method to find target files in one directory, including subdirectory
    • get_M_Minv(): Get Perspective Transform
    • draw_area(img_origin, img_line, Minv, left_fit, right_fit): Draw the road area in the image
    • draw_demo(img_result, img_bin, img_canny, img_line, img_line_warp, img_bev_result, curvature, distance_from_center, steer): Generate the Demo image
  • lib_camera --- Class for the industrial camera

    • open(): Open the camera
    • grab(): Grab an image from the camera
    • close(): Close the camera
  • mvsdk --- Official lib for the industrial camera

  • lib_can --- Class for the CAN

    • OpenDevice(): Open the CAN device
    • InitCAN(can_idx=0): Init the CAN
    • StartCan(can_idx=0): Start the CAN
    • Send(can_idx, id, frame_len, data): Send messages to CAN
    • Listen(can_idx, id, try_cnt=10): Receive messages from CAN
    • CloseDevice(): Close the CAN device
  • lib_LaneDetector --- Class for the lane detector

    • detect_line(img_input, steer, memory, debug=False): Main Function
    • pre_process(img, debug=False): Image Preprocessing
    • find_line(img, memory, debug=False): Detect the lane using Sliding Windows Methods
    • calculate_curv_and_pos(img_line, left_fit, right_fit): Calculate the curvature & distance from the center
  • lib_ObjectDetector --- Class for the traffic object detector based on YOLO5

    • load_model(): Load Yolo5 model from pytorch hub
    • detect(frame, img_area): Predict and analyze using yolo5
    • class_to_label(idx): Return the corresponding string label for a given label value
    • plot_detections(results, frame): Takes a frame and its results as input, and plots the bounding boxes and label on to the frame
  • lib_vehicle --- Class for the vehicle model and vehicle control

    • steer_cal(curvature, dist_from_center): Calculate the steer according to the curvature of the lane and the distance form the center
    • steer_ctrl(): Control the steer by sending the signal via CAN
    • steer_get(): Get the real steer of the vehicle via the CAN
  • libcontrolcan.so --- DLL for the CAN device

  • libMVSDK.so --- DLL for the industrial camera

Owner
Siqi Fan
Graduate Student @ IA, CAS (2019 ~ now) B.E. @ Shanghai Jiao Tong University (SJTU,2015~2019)
Siqi Fan
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las TecnologĂ­as del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023