Stochastic Scene-Aware Motion Prediction

Overview

Stochastic Scene-Aware Motion Prediction

[Project Page] [Paper]

SAMP Examples

Description

This repository contains the training code for MotionNet and GoalNet of SAMP. Pipeline

Installation

To install the necessary dependencies run the following command:

    pip install -r requirements.txt

The code has been tested with Python 3.8.10, CUDA 10.0, CuDNN 7.5 and PyTorch 1.7.1 on Ubuntu 20.04.

Training Data

The training data for MotionNet and GoalNet could be found in the website downloads. Or could be extracted from the Unity runtime code.

Update data_dir parameter in the config files cfg_files\MotionNet.yaml and cfg_files\GoalNet.yaml to where your data is placed. By default it is set to ~\SAMP_workspace\data\MotionNet and ~\SAMP_workspace\data\GoalNet.

The training features of MotionNet and GoalNet are described in Section 3.1 and Section 3.2 of the [Paper] respectively. The character state X is described in Equation 1.

Training

To train MotionNet use:

    python src/MotionNet_train.py --config cfg_files/MotionNet.yaml

To train GoalNet use:

    python src/GoalNet_train.py --config cfg_files/GoalNet.yaml

Training MotionNet for 100 epochs takes ~5 hours on Tesla V100-PCIE-32GB. Training GoalNet should be done within 10 minutes.

Loading the trained model to Unity

After training; the PyTorch model need to be converted to ONNX in order to be used in Unity. Check https://onnx.ai/ for more details about ONNX. In Unity; we will use Barracuda which is an inference library which can load ONNX models into Unity. More details about Barracuda here.

    python src/Torch2ONNX.py --config cfg_files/MotionNet.yaml --load_checkpoint 100
    python src/Torch2ONNX.py --config cfg_files/GoalNet.yaml --load_checkpoint 100

Saving norm data

The normalization data is used during training and inference. To save normalization data use the following

    python src/save_norm_data.py --config cfg_files/MotionNet.yaml

or

    python src/save_norm_data.py --config cfg_files/GoalNet.yaml

Note that this might take couple of minutes as the script loads the whole training data.

License

  1. You may use, reproduce, modify, and display the research materials provided under this license (the “Research Materials”) solely for noncommercial purposes. Noncommercial purposes include academic research, teaching, and testing, but do not include commercial licensing or distribution, development of commercial products, or any other activity which results in commercial gain. You may not redistribute the Research Materials.
  2. You agree to (a) comply with all laws and regulations applicable to your use of the Research Materials under this license, including but not limited to any import or export laws; (b) preserve any copyright or other notices from the Research Materials; and (c) for any Research Materials in object code, not attempt to modify, reverse engineer, or decompile such Research Materials except as permitted by applicable law.
  3. THE RESEARCH MATERIALS ARE PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, AND YOU ASSUME ALL RISKS ASSOCIATED WITH THEIR USE. IN NO EVENT WILL ANYONE BE LIABLE TO YOU FOR ANY ACTUAL, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH USE OF THE RESEARCH MATERIALS.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{hassan_samp_2021,
  title = {Stochastic Scene-Aware Motion Prediction},
  author = {Hassan, Mohamed and Ceylan, Duygu and Villegas, Ruben and Saito, Jun and Yang, Jimei and Zhou, Yi and Black, Michael},
  booktitle = {Proceedings of the International Conference on Computer Vision 2021},
  month = oct,
  year = {2021},
  event_name = {International Conference on Computer Vision 2021},
  event_place = {virtual (originally Montreal, Canada)},
  month_numeric = {10}
}
Owner
Mohamed Hassan
Mohamed Hassan
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021