Stochastic Scene-Aware Motion Prediction

Overview

Stochastic Scene-Aware Motion Prediction

[Project Page] [Paper]

SAMP Examples

Description

This repository contains the training code for MotionNet and GoalNet of SAMP. Pipeline

Installation

To install the necessary dependencies run the following command:

    pip install -r requirements.txt

The code has been tested with Python 3.8.10, CUDA 10.0, CuDNN 7.5 and PyTorch 1.7.1 on Ubuntu 20.04.

Training Data

The training data for MotionNet and GoalNet could be found in the website downloads. Or could be extracted from the Unity runtime code.

Update data_dir parameter in the config files cfg_files\MotionNet.yaml and cfg_files\GoalNet.yaml to where your data is placed. By default it is set to ~\SAMP_workspace\data\MotionNet and ~\SAMP_workspace\data\GoalNet.

The training features of MotionNet and GoalNet are described in Section 3.1 and Section 3.2 of the [Paper] respectively. The character state X is described in Equation 1.

Training

To train MotionNet use:

    python src/MotionNet_train.py --config cfg_files/MotionNet.yaml

To train GoalNet use:

    python src/GoalNet_train.py --config cfg_files/GoalNet.yaml

Training MotionNet for 100 epochs takes ~5 hours on Tesla V100-PCIE-32GB. Training GoalNet should be done within 10 minutes.

Loading the trained model to Unity

After training; the PyTorch model need to be converted to ONNX in order to be used in Unity. Check https://onnx.ai/ for more details about ONNX. In Unity; we will use Barracuda which is an inference library which can load ONNX models into Unity. More details about Barracuda here.

    python src/Torch2ONNX.py --config cfg_files/MotionNet.yaml --load_checkpoint 100
    python src/Torch2ONNX.py --config cfg_files/GoalNet.yaml --load_checkpoint 100

Saving norm data

The normalization data is used during training and inference. To save normalization data use the following

    python src/save_norm_data.py --config cfg_files/MotionNet.yaml

or

    python src/save_norm_data.py --config cfg_files/GoalNet.yaml

Note that this might take couple of minutes as the script loads the whole training data.

License

  1. You may use, reproduce, modify, and display the research materials provided under this license (the “Research Materials”) solely for noncommercial purposes. Noncommercial purposes include academic research, teaching, and testing, but do not include commercial licensing or distribution, development of commercial products, or any other activity which results in commercial gain. You may not redistribute the Research Materials.
  2. You agree to (a) comply with all laws and regulations applicable to your use of the Research Materials under this license, including but not limited to any import or export laws; (b) preserve any copyright or other notices from the Research Materials; and (c) for any Research Materials in object code, not attempt to modify, reverse engineer, or decompile such Research Materials except as permitted by applicable law.
  3. THE RESEARCH MATERIALS ARE PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, AND YOU ASSUME ALL RISKS ASSOCIATED WITH THEIR USE. IN NO EVENT WILL ANYONE BE LIABLE TO YOU FOR ANY ACTUAL, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH USE OF THE RESEARCH MATERIALS.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{hassan_samp_2021,
  title = {Stochastic Scene-Aware Motion Prediction},
  author = {Hassan, Mohamed and Ceylan, Duygu and Villegas, Ruben and Saito, Jun and Yang, Jimei and Zhou, Yi and Black, Michael},
  booktitle = {Proceedings of the International Conference on Computer Vision 2021},
  month = oct,
  year = {2021},
  event_name = {International Conference on Computer Vision 2021},
  event_place = {virtual (originally Montreal, Canada)},
  month_numeric = {10}
}
Owner
Mohamed Hassan
Mohamed Hassan
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022