Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Related tags

Deep LearningNLOS-OT
Overview

NLOS-OT

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Description

In this repository, we release the NLOS-OT code in Pytorch as well as the passive NLOS imaging dataset NLOS-Passive.

  • Problem statement: Passive NLOS imaging

  • NLOS-OT architecture

  • The reconstruction results of NLOS-OT trained by specific dataset without partial occluder

  • The generalization results of NLOS-OT trained by dataset only from STL-10 with unknown partial occluder

Installation

  1. install required packages

  2. clone the repo

Prepare Data

  1. Download dataset

You can download each group in NLOS-Passive through the link below. Please note that a compressed package (.zip or .z01+.zip) represents a group of measured data.

link:https://pan.baidu.com/s/19Q48BWm1aJQhIt6BF9z-uQ

code:j3p2

If the link fails, please feel free to contact me.

  1. Organize the files structure of the dataset

Demo / Evaluate

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

  1. Download pretrained pth

  2. run the test.py

Train

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

Citation

If you find our work and code helpful, please consider cite:

We thank the following great works:

  • DeblurGAN, pix2pix: Our code is based on the framework provided by the two repos.

  • IntroVAE: The encoder and decoder in NLOS-OT are based on IntroVAE.

  • AE-OT, AEOT-GAN: The idea of using OT to complete passive NLOS imaging tasks in NLOS-OT comes from the two works.

If you find them helpful, please cite:

@inproceedings{kupynDeblurGANBlindMotion2018,
	title = {{DeblurGAN}: {Blind} {Motion} {Deblurring} {Using} {Conditional} {Adversarial} {Networks}},
	booktitle = {2018 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	author = {Kupyn, Orest and Budzan, Volodymyr and Mykhailych, Mykola and Mishkin, Dmytro and Matas, Jiri},
	year = {2018},
}

@inproceedings{isolaImagetoimageTranslationConditional2017,
	title = {Image-to-image translation with conditional adversarial networks},
	booktitle = {2017 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	publisher = {IEEE},
	author = {Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A.},
	year = {2017},
	pages = {5967--5976},
}

@inproceedings{huang_introvae_2018,
	title = {{IntroVAE}: {Introspective} {Variational} {Autoencoders} for {Photographic} {Image} {Synthesis}},
	shorttitle = {{IntroVAE}},
	urldate = {2020-07-14},
	booktitle = {Advances in neural information processing systems},
	author = {Huang, Huaibo and Li, Zhihang and He, Ran and Sun, Zhenan and Tan, Tieniu},
	month = oct,
	year = {2018}
}

@article{an_ae-ot-gan_2020,
	title = {{AE}-{OT}-{GAN}: {Training} {Gans} from {Data} {Specific} {Latent} {Distribution}},
	shorttitle = {Ae-{Ot}-{Gan}},
	journal = {arXiv},
	author = {An, Dongsheng and Guo, Yang and Zhang, Min and Qi, Xin and Lei, Na and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020}
}

@inproceedings{an_ae-ot_2020,
	title = {{AE}-{OT}: {A} {NEW} {GENERATIVE} {MODEL} {BASED} {ON} {EX}- {TENDED} {SEMI}-{DISCRETE} {OPTIMAL} {TRANSPORT}},
	language = {en},
	author = {An, Dongsheng and Guo, Yang and Lei, Na and Luo, Zhongxuan and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020},
	pages = {19},
}
Owner
Ruixu Geng(耿瑞旭)
Undergraduate 2015 - 2019 (Expected), Information and Communication Engineering, UESTC
Ruixu Geng(耿瑞旭)
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022