Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Overview

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Baris Gecer 1, Binod Bhattarai 1, Josef Kittler 2, & Tae-Kyun Kim 1
1 Department of Electrical and Electronic Engineering, Imperial College London, UK
2 Centre for Vision, Speech and Signal Processing, University of Surrey, UK

This repository provides a Tensorflow implementation of our study where we propose a novel end-to-end semi-supervised adversarial framework to generate photorealistic face images of new identities with wide ranges of expressions, poses, and illuminations conditioned by a 3D morphable model.



(This documentation is still under construction, please refer to our paper for more details)

Approach

Our approach aims to synthesize photorealistic images conditioned by a given synthetic image by 3DMM. It regularizes cycle consistency by introducing an additional adversarial game between the two generator networks in an unsupervised fashion. Thus the under-constraint cycle loss is supervised to have correct matching between the two domains by the help of a limited number of paired data. We also encourage the generator to preserve face identity by a set-based supervision through a pretrained classification network.

Dependencies

Data

  • Generate synthetic images using any 3DMM model i.e. LSFM or Basel Face Model by running gen_syn_latent.m
  • Align and crop all datasets using MTCNN to 108x108

Usage

Train by the following script

$ python main.py    --log_dir [path2_logdir] --data_dir [path2_datadir] --syn_dataset [synthetic_dataset_name]
                    --dataset [real_dataset_name] --dataset_3dmm [300W-3D & AFLW2000_dirname] --input_scale_size 108

Add --load_path [paused_training_logdir] to continue a training

Generate realistic images after training by the following script

$ python main.py    --log_dir [path2_logdir] --data_dir [path2_datadir] --syn_dataset [synthetic_dataset_name]
                    --dataset [real_dataset_name] --dataset_3dmm [300W-3D & AFLW2000_dirname] --input_scale_size 108
                    --save_syn_dataset [saving_dir] --train_generator False --generate_dataset True --pretrained_gen [path2_logdir + /model.ckpt]

Pretrained Model

You can download the pretrained model

More Results


Citation

if you find this work is useful for your research, please cite our paper:

@inproceedings{gecer2018semi,
  title={Semi-supervised adversarial learning to generate photorealistic face images of new identities from 3D morphable model},
  author={Gecer, Baris and Bhattarai, Binod and Kittler, Josef and Kim, Tae-Kyun},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={217--234},
  year={2018}
}


Acknowledgement

This work was supported by the EPSRC Programme Grant ‘FACER2VM’ (EP/N007743/1). Baris Gecer is funded by the Turkish Ministry of National Education. This study is morally motivated to improve face recognition to help prediction of genetic disorders visible on human face in earlier stages.

Code borrows heavily from carpedm20's BEGAN implementation.

Owner
Baris Gecer
I am currently PhD. student at Imperial College, London and working on face recognition with generative adversarial learning
Baris Gecer
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022