Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

Related tags

Deep Learning1xN
Overview

1xN Pattern for Pruning Convolutional Neural Networks (paper) .

This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Networks". A more formal project will be released as soon as we are given the authority from Alibaba Group.

1) 1×N Block Pruning

Requirements

  • Python 3.7
  • Pytorch >= 1.0.1
  • CUDA = 10.0.0

Code Running

To reproduce our experiments, please use the following command:

python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--job_dir ./experiment/ \
--data_path [DATA_PATH] \
--pretrained_model [PRETRAIN_MODEL_PATH] \
--pr_target 0.5 \
--N 4 (or 2, 8, 16, 32) \
--conv_type BlockL1Conv \
--train_batch_size 256 \
--eval_batch_size 256 \
--rearrange \

Accuracy Performance

Table 1: Performance comparison of our 1×N block sparsity against weight pruning and filter pruning (p = 50%).

MobileNet-V1 Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 70.764 89.592 Pruned Model
Filter Pruning 65.348 86.264 Pruned Model
1 x 2 Block 70.281 89.370 Pruned Model
1 x 4 Block 70.052 89.056 Pruned Model
1 x 8 Block 69.908 89.027 Pruned Model
1 x 16 Block 69.559 88.933 Pruned Model
1 x 32 Block 69.541 88.801 Pruned Model
MobileNet-V2 Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 71.146 89.872 Pruned Model
Filter Pruning 66.730 87.190 Pruned Model
1 x 2 Block 70.233 89.417 Pruned Model
1 x 4 Block 60.706 89.165 Pruned Model
1 x 8 Block 69.372 88.862 Pruned Model
1 x 16 Block 69.352 88.708 Pruned Model
1 x 32 Block 68.762 88.425 Pruned Model
MobileNet-V3-small Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 66.376 86.868 Pruned Model
Filter Pruning 59.054 81.713 Pruned Model
1 x 2 Block 65.380 86.060 Pruned Model
1 x 4 Block 64.465 85.495 Pruned Model
1 x 8 Block 64.101 85.274 Pruned Model
1 x 16 Block 63.126 84.203 Pruned Model
1 x 32 Block 62.881 83.982 Pruned Model
MobileNet-V3-large Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 72.897 91.093 Pruned Model
Filter Pruning 69.137 89.097 Pruned Model
1 x 2 Block 72.120 90.677 Pruned Model
1 x 4 Block 71.935 90.458 Pruned Model
1 x 8 Block 71.478 90.163 Pruned Model
1 x 16 Block 71.112 90.129 Pruned Model
1 x 32 Block 70.769 89.696 Pruned Model

More links for pruned models under different pruning rates and their training logs can be found in MobileNet-V2 and ResNet-50.

Evaluate our models

To verify the performance of our pruned models, download our pruned models from the links provided above and run the following command:

python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--data_path [DATA_PATH] \
--conv_type DenseConv \
--evaluate [PRUNED_MODEL_PATH] \
--eval_batch_size 256 \

Arguments

optional arguments:
  -h, --help            show this help message and exit
  --gpus                Select gpu_id to use. default:[0]
  --data_path           The dictionary where the data is stored.
  --job_dir             The directory where the summaries will be stored.
  --resume              Load the model from the specified checkpoint.
  --pretrain_model      Path of the pre-trained model.
  --pruned_model        Path of the pruned model to evaluate.
  --arch                Architecture of model. For ImageNet :mobilenet_v1, mobilenet_v2, mobilenet_v3_small, mobilenet_v3_large
  --num_epochs          The num of epochs to train. default:180
  --train_batch_size    Batch size for training. default:256
  --eval_batch_size     Batch size for validation. default:100
  --momentum            Momentum for Momentum Optimizer. default:0.9
  --lr LR               Learning rate. default:1e-2
  --lr_decay_step       The iterval of learn rate decay for cifar. default:100 150
  --lr_decay_freq       The frequecy of learn rate decay for Imagenet. default:30
  --weight_decay        The weight decay of loss. default:4e-5
  --lr_type             lr scheduler. default: cos. optional:exp/cos/step/fixed
  --use_dali            If this parameter exists, use dali module to load ImageNet data (benefit in training acceleration).
  --conv_type           Importance criterion of filters. Default: BlockL1Conv. optional: BlockRandomConv, DenseConv
  --pr_target           Pruning rate. default:0.5
  --full                If this parameter exists, prune fully-connected layer.
  --N                   Consecutive N kernels for removal (see paper for details).
  --rearrange           If this parameter exists, filters will be rearranged (see paper for details).
  --export_onnx         If this parameter exists, export onnx model.

2)Filter Rearrangement

Table 2: Performance studies of our 1×N block sparsity with and without filter rearrangement (p=50%).

N = 2 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.900 89.296 Pruned Model
Rearrange 70.233 89.417 Pruned Model
N = 4 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.521 88.920 Pruned Model
Rearrange 69.579 88.944 Pruned Model
N = 8 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.206 88.608 Pruned Model
Rearrange 69.372 88.862 Pruned Model
N = 16 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 68.971 88.399 Pruned Model
Rearrange 69.352 88.708 Pruned Model
N = 32 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 68.431 88.315 Pruned Model
Rearrange 68.762 88.425 Pruned Model

3)Encoding and Decoding Efficiency

Performance and latency comparison

Our sparse convolution implementation has been released to TVM community.

To verify the performance of our pruned models, convert onnx model and run the following command:

python model_tune.py \
--onnx_path [ONNX_MODEL_PATH] \
--bsr 4 \
--bsc 1 \
--sparsity 0.5

The detail tuning setting is referred to TVM.

4)Contact

Any problem regarding this code re-implementation, please contact the first author: [email protected] or the third author: [email protected].

Any problem regarding the sparse convolution implementation, please contact the second author: [email protected].

Owner
Mingbao Lin (林明宝)
I am currently a final-year Ph.D student.
Mingbao Lin (林明宝)
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023