Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Overview

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning

Sriram Ravula, Georgios Smyrnis

This is the code for our project "Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning". We make use of contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations.

Requirements

In order to run the code for our models, it is necessary to install pytorch_lightning and all of its dependencies. Moreover, it is necessary that the following files from the OpenAI CLIP repository (https://github.com/openai/CLIP) are added, along with their respective requirements:

Structure

The following source files are required to execute the various experiments mentioned in our report:

  • baselines.py: Code which performs training and evaluation of the baseline end-to-end supervised model.
  • noisy_clip_dataparallel.py: Performs training and evaluation of the student model, based on the CLIP architecture.
  • zeroshot_validation.py: Performs evaluation of the zero-shot model.
  • linear_probe.py: Performs training and evaluation of a linear probe on top of the learned representations.
  • noise_level_testing.py: Evaluation of a trained model on various noise levels added in the input.
  • utils.py: General library for functions used throughout our code.

We also provide slice_imagenet100.py, a code to be used one time to generate the ImageNet-100 subset we used, as defined by imagenet100.txt. In order to run most of the code we provide, please first run this file with the proper source path to the full ImageNet dataset (can be downloaded separately at https://image-net.org/download) and desired destination path for the 100-class subset. Then, provide the path to your 100-class ImageNet subset in the yaml config files. For further details, refer to the comments in slice_imagenet100.py and the global variables set at the beginning of the script.

In the config/ folder, some sample configuration files for our experiments are included.

Examples

Using the following snippets of code, the experiments described in the report can be run. Note that editing the batch_size and gpus parameters of the sample files will lead to speedup and increased performance for the contrastive models.

  • Short_Evaluation_Demo.ipynb: A small demo of the types of distortions we use, as well as a comparison between the baseline and linear evaluations. You will need to download the checkpoints from the google drive link for this to run.
  • python baselines.py --config_file config/Supervised_CLIP_Baselines/sample.yaml: Train a baseline model, in an end-to-end supervised fashion.
  • python noisy_clip_dataparallel.py --config_file config/NoisyRN101/sample.yaml: Trains a CLIP model using contrastive learning.
  • python zeroshot_validation.py --config_file config/NoisyRN101/sample.yaml --ckpt_file rand90_zeroshot.ckpt: Performs zeroshot evaluation of a trained zero-shot clip model. The sample file to be used is the same one specified during training (for flexibility, checkpoint file provided separately).
  • python linear_probe.py --config_file config/LinearProbeSubset/sample.yaml: Trains a linear probe on top of a representation learned using contrastive loss. This requires the user to specify a checkpoint file in the yaml config file.
  • python noise_level_testing.py --config_file config/NoiseLevelTesting/sample.yaml: Evaluates a trained model for various levels of noise in the dataset. This requires the user to specify a checkpoint file in the yaml config file.
Owner
Sriram Ravula
Sriram Ravula
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022