Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Overview

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning

Sriram Ravula, Georgios Smyrnis

This is the code for our project "Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning". We make use of contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations.

Requirements

In order to run the code for our models, it is necessary to install pytorch_lightning and all of its dependencies. Moreover, it is necessary that the following files from the OpenAI CLIP repository (https://github.com/openai/CLIP) are added, along with their respective requirements:

Structure

The following source files are required to execute the various experiments mentioned in our report:

  • baselines.py: Code which performs training and evaluation of the baseline end-to-end supervised model.
  • noisy_clip_dataparallel.py: Performs training and evaluation of the student model, based on the CLIP architecture.
  • zeroshot_validation.py: Performs evaluation of the zero-shot model.
  • linear_probe.py: Performs training and evaluation of a linear probe on top of the learned representations.
  • noise_level_testing.py: Evaluation of a trained model on various noise levels added in the input.
  • utils.py: General library for functions used throughout our code.

We also provide slice_imagenet100.py, a code to be used one time to generate the ImageNet-100 subset we used, as defined by imagenet100.txt. In order to run most of the code we provide, please first run this file with the proper source path to the full ImageNet dataset (can be downloaded separately at https://image-net.org/download) and desired destination path for the 100-class subset. Then, provide the path to your 100-class ImageNet subset in the yaml config files. For further details, refer to the comments in slice_imagenet100.py and the global variables set at the beginning of the script.

In the config/ folder, some sample configuration files for our experiments are included.

Examples

Using the following snippets of code, the experiments described in the report can be run. Note that editing the batch_size and gpus parameters of the sample files will lead to speedup and increased performance for the contrastive models.

  • Short_Evaluation_Demo.ipynb: A small demo of the types of distortions we use, as well as a comparison between the baseline and linear evaluations. You will need to download the checkpoints from the google drive link for this to run.
  • python baselines.py --config_file config/Supervised_CLIP_Baselines/sample.yaml: Train a baseline model, in an end-to-end supervised fashion.
  • python noisy_clip_dataparallel.py --config_file config/NoisyRN101/sample.yaml: Trains a CLIP model using contrastive learning.
  • python zeroshot_validation.py --config_file config/NoisyRN101/sample.yaml --ckpt_file rand90_zeroshot.ckpt: Performs zeroshot evaluation of a trained zero-shot clip model. The sample file to be used is the same one specified during training (for flexibility, checkpoint file provided separately).
  • python linear_probe.py --config_file config/LinearProbeSubset/sample.yaml: Trains a linear probe on top of a representation learned using contrastive loss. This requires the user to specify a checkpoint file in the yaml config file.
  • python noise_level_testing.py --config_file config/NoiseLevelTesting/sample.yaml: Evaluates a trained model for various levels of noise in the dataset. This requires the user to specify a checkpoint file in the yaml config file.
Owner
Sriram Ravula
Sriram Ravula
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022