Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Overview

Representation Robustness Evaluations

Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all the scripts, we assume the working directory to be the root folder of our code.

Get ready a pre-trained model

We have two methods to pre-train a model for evaluation. Method 1: Follow instructions from MadryLab's robustness package to train a standard model or a robust model with a given PGD setting. For example, to train a robust ResNet18 with l-inf constraint of eps 8/255

python -m robustness.main --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch resnet18 \
--epoch 150 \
--adv-train 1 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--exp-name resnet18_adv

Method 2: Use our wrapped code and set task=train-model. Optional commands:

  • --classifier-loss = robust (adversarial training) / standard (standard training)
  • --arch = baseline_mlp (baseline-h with last two layer as mlp) / baseline_linear (baseline-h with last two layer as linear classifier) / vgg16 / ...

Our results presented in Figure 1 and 2 use model architecture: baseline_mlp, resnet18, vgg16, resnet50, DenseNet121. For example, to train a baseline-h model with l-inf constraint of eps 8/255

python main.py --dataset cifar \
--task train-model \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch baseline_mlp \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--classifier-loss robust \
--exp-name baseline_mlp_adv

To parse the store file, run

from cox import store
s = store.Store('/path/to/model/parent-folder', 'model-folder')
print(s['logs'].df)
s.close()

 

Evaluate the representation robustness (Figure 1, 2, 3)

Set task=estimate-mi to load a pre-trained model and test the mutual information between input and representation. By subtracting the normal-case and worst-case mutual information we have the representation vulnerability. Optional commands:

  • --estimator-loss = worst (worst-case mutual information estimation) / normal (normal-case mutual information estimation)

For example, to test the worst-case mutual information of ResNet18, run

python main.py --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--task estimate-mi \
--representation-type layer \
--estimator-loss worst \
--arch resnet18 \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.best \
--exp-name estimator_worst__resnet18_adv \
--no-store

or to test on the baseline-h, run

python main.py --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--task estimate-mi \
--representation-type layer \
--estimator-loss worst \
--arch baseline_mlp \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.best \
--exp-name estimator_worst__baseline_mlp_adv \
--no-store

 

Learn Representations

Set task=train-encoder to learn a representation using our training principle. For train by worst-case mutual information maximization, we can use other lower-bound of mutual information as surrogate for our target, which may have slightly better empirical performance (e.g. nce). Please refer to arxiv.org/abs/1808.06670 for more information. Optional commands:

  • --estimator-loss = worst (worst-case mutual information maximization) / normal (normal-case mutual information maximization)
  • --va-mode = dv (Donsker-Varadhan representation) / nce (Noise-Contrastive Estimation) / fd (fenchel dual representation)
  • --arch = basic_encoder (Hjelm et al.) / ...

Example:

python main.py --dataset cifar \
--task train-encoder \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch basic_encoder \
--representation-type layer \
--estimator-loss worst \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--exp-name learned_encoder

 

Test on Downstream Classifications (Figure 4, 5, 6; Table 1, 3)

Set task=train-classifier to test the classification accuracy of learned representations. Optional commands:

  • --classifier-loss = robust (adversarial classification) / standard (standard classification)
  • --classifier-arch = mlp (mlp as downstream classifier) / linear (linear classifier as downstream classifier)

Example:

python main.py --dataset cifar \
--task train-classifier \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch basic_encoder \
--classifier-arch mlp \
--representation-type layer \
--classifier-loss robust \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.latest \
--exp-name test_learned_encoder
Owner
Sicheng
Sicheng
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023