buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

Overview

buildseg

Python 3.8 PaddlePaddle 2.2 QGIS 3.16.11

buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle.

fds

How to use

  1. Download and install QGIS and clone the repo :
git clone [email protected]:geoyee/buildseg.git
  1. Install requirements :

    • Enter the folder and install dependent libraries using OSGeo4W shell (Open As Administrator) :
    cd buildseg
    pip install -r requirements.txt
    • Or open OSGeo4W shell as administrator and enter :
    pip install opencv-python paddlepaddle>=2.2.0 paddleseg --user
  2. Copy folder named buildseg in QGIS configuration folder and choose the plugin from plugin manager in QGIS (If not appeared restart QGIS).

    • You can know this folder from QGIS Setting Menu at the top-left of QGIS UI Settings > User Profiles > Open Active Profile Folder .
    • Go to python/plugins then paste the buildseg folder.
    • Full path should be like : C:\Users\$USER\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\buildseg.
  3. Open QGIS, load your raster and select the parameter file (*.pdiparams) then click ok.

Model and Parameter

Model Backbone Resolution mIoU Params(MB) Inference Time(ms) Links
OCRNet HRNet_W18 512x512 90.64% 46.4 / Static Weight
  • Train/Eval Dataset : Link.
  • We have done all testing and development using : Tesla V100 32G in AI Studio.

TODO

  • Extract building on 512x512 remote sensing images.
  • Extract building on big remote sensing images through splitting it into small tiles, extract buildings then mosaic it back (merge) to a full extent.
  • Replace the model and parameters (large-scale data).
  • Convert to static weight (*.pdiparams) instead of dynamic model (*.pdparams).
  • Add a Jupyter Notebook (*.ipynb) about how to fine-tune parameters using other's datasets based on PaddleSeg.
  • Hole digging inside the polygons.
  • Convert raster to Shapefile/GeoJson by GDAL/OGR (gdal.Polygonize) instead of findContours in OpenCV.
  • Update plugin's UI :
    • Add menu to select one raster file from QGIS opened raster layers.
    • Select the Parameter path one time (some buggy windows appear when importing the *.pdiparams file).
    • Define the output path of the vector file (Direct Path or Temporary in the memory).
    • Add setting about used GPU / block size and overlap size.
  • Accelerate, etc.
  • Add another model, like Vision Transform.
You might also like...
Multi-Modal Machine Learning toolkit based on PaddlePaddle.
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

Awesome Remote Sensing Toolkit based on PaddlePaddle.
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Official PaddlePaddle implementation of Paint Transformer
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Comments
  • QGIS crashes in startup of the plugin on Linux/Ubuntu

    QGIS crashes in startup of the plugin on Linux/Ubuntu

    Bug with Linux/Debian/Ubuntu image

    and when installing raspberry bi deps image

    it just crashes when trying to import paddle (in QGIS Python script window) without trying to install the plugin

    Tried on Ubuntu 18.04 and 20.04

    bug solved 
    opened by Youssef-Harby 4
  • Use ONNX

    Use ONNX

    please check this branch, test in Mac OS and update README / README_CN (☑ On mac OS Big Sur+). if you think we should use this branch rather than develop (use onnx instead of paddle), you can argee with the pr. or not, please write your viewpoint. thank you youssef ☺

    opened by geoyee 2
  • Installation Bug Report: Plugin Error while installation

    Installation Bug Report: Plugin Error while installation

    An error occurred during execution of following code: pyplugin_installer.instance().installPlugin('buildseg', stable=False)

    Traceback (most recent call last): File "", line 1, in File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 333, in installPlugin self.processDependencies(plugin["id"]) File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 682, in processDependencies dlg = QgsPluginDependenciesDialog(plugin_id, to_install, to_upgrade, not_found) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 92, in init _make_row(data, i, name) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 63, in _make_row widget.use_stable_version = data['use_stable_version'] KeyError: 'use_stable_version'

    Python version: 3.8.10 (default, Nov 26 2021, 20:14:08) [GCC 9.3.0]

    QGIS version: 3.22.3-Białowieża 'Białowieża', 1628765ec7

    Python path: ['/usr/share/qgis/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python/plugins', '/usr/share/qgis/python/plugins', '/usr/lib/python38.zip', '/usr/lib/python3.8', '/usr/lib/python3.8/lib-dynload', '/home/robotics/.local/lib/python3.8/site-packages', '/usr/local/lib/python3.8/dist-packages', '/usr/lib/python3/dist-packages', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python/plugins/DeepLearningTools']

    bug solved 
    opened by makamkkumar 2
  • Installation: using QGIS

    Installation: using QGIS "Manage and Install Plugins", or directions in the md file?

    What is better for Installation: using QGIS "Manage and Install Plugins", or following directions in the md file? Using the QGIS installer (3.24.0-Tisler) I get: An error occurred during execution of following code: pyplugin_installer.instance().installPlugin('buildseg', stable=True)

    Traceback (most recent call last): File "", line 1, in File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 333, in installPlugin self.processDependencies(plugin["id"]) File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 682, in processDependencies dlg = QgsPluginDependenciesDialog(plugin_id, to_install, to_upgrade, not_found) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 92, in init _make_row(data, i, name) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 63, in _make_row widget.use_stable_version = data['use_stable_version'] KeyError: 'use_stable_version'

    Python version: 3.9.5 (default, Nov 18 2021, 16:00:48) [GCC 10.3.0]

    QGIS version: 3.24.0-Tisler 'Tisler', 6b44a42058

    Python path: ['/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/terminus_processing', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/LAStools', '/usr/share/qgis/python', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins', '/usr/share/qgis/python/plugins', '/home/alobo/OTB/OTB-7.3.0-Linux64/lib/python', '/usr/lib/python39.zip', '/usr/lib/python3.9', '/usr/lib/python3.9/lib-dynload', '/home/alobo/.local/lib/python3.9/site-packages', '/usr/local/lib/python3.9/dist-packages', '/usr/lib/python3/dist-packages', '/usr/lib/python3.9/dist-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python', '.', '/home/alobo/.local/lib/python3.9/site-packages/IPython/extensions', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/site-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/qgispluginsupport/qps/pyqtgraph', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/site-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/apps', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/coreapps']

    bug 
    opened by aloboa 3
Releases(v0.3.1)
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022