Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Overview

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

This repository contains the code used for the experiments in "Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness" published at SIGIR 2021 (preprint available).

Citation

If you use this code to produce results for your scientific publication, or if you share a copy or fork, please refer to our SIGIR 2021 paper:

@inproceedings{oosterhuis2021plrank,
  Author = {Oosterhuis, Harrie},
  Booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR`21)},
  Organization = {ACM},
  Title = {Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness},
  Year = {2021}
}

License

The contents of this repository are licensed under the MIT license. If you modify its contents in any way, please link back to this repository.

Usage

This code makes use of Python 3, the numpy and the tensorflow packages, make sure they are installed.

A file is required that explains the location and details of the LTR datasets available on the system, for the Yahoo! Webscope, MSLR-Web30k, and Istella datasets an example file is available. Copy the file:

cp example_datasets_info.txt local_dataset_info.txt

Open this copy and edit the paths to the folders where the train/test/vali files are placed.

Here are some command-line examples that illustrate how the results in the paper can be replicated. First create a folder to store the resulting models:

mkdir local_output

To optimize NDCG use run.py with the --loss flag to indicate the loss to use (PL_rank_1/PL_rank_2/lambdaloss/pairwise/policygradient/placementpolicygradient); --cutoff indicates the top-k that is being optimized, e.g. 5 for [email protected]; --num_samples the number of samples to use per gradient estimation (with dynamic for the dynamic strategy); --dataset indicates the dataset name, e.g. Webscope_C14_Set1. The following command optimizes [email protected] with PL-Rank-2 and the dynamic sampling strategy on the Yahoo! dataset:

python3 run.py local_output/yahoo_ndcg5_dynamic_plrank2.txt --num_samples dynamic --loss PL_rank_2 --cutoff 5 --dataset Webscope_C14_Set1

To optimize the disparity metric for exposure fairness use fairrun.py this has the additional flag --num_exposure_samples for the number of samples to use to estimate exposure (this must always be a greater number than --num_samples). The following command optimizes disparity with PL-Rank-2 and the dynamic sampling strategy on the Yahoo! dataset with 1000 samples for estimating exposure:

python3 fairrun.py local_output/yahoo_fairness_dynamic_plrank2.txt --num_samples dynamic --loss PL_rank_2 --cutoff 5 --num_exposure_samples 1000 --dataset Webscope_C14_Set1
Owner
H.R. Oosterhuis
H.R. Oosterhuis
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022