On the adaptation of recurrent neural networks for system identification

Overview

On the adaptation of recurrent neural networks for system identification

This repository contains the Python code to reproduce the results of the paper On the adaptation of recurrent neural networks for system identification by Marco Forgione, Aneri Muni, Dario Piga, and Marco Gallieri.

We introduce a transfer learning approach which enables fast and efficient adaptation of Recurrent Neural Network models.

A nominal RNN model is first identified using available measurements. The system dynamics are then assumed to change, leading to an unacceptable degradation of the nominal model performance on the perturbed system.

To cope with the mismatch, the model is augmented with an additive correction term trained on fresh data from the new dynamic regime. The correction term is learned through a Bayesian Linear Regression (BLR) method defined in terms of the features spanned by the nominal model's Jacobian with respect to its parameters.

RNN_adaptation

A non-parametric view of the approach is also proposed, which extends the recent work on Gaussian Process with Neural Tangent Kernel (NTK-GP) discussed in [1] to the RNN case (RNTK-GP).

Finally, we introduce an approach to initialize the RNN state based on a context of past data, so that an estimate of the initial state is not needed on top of the parameter estimation.

RNN_initialization

Folders:

Software requirements:

Simulations were performed on a Python 3.8 conda environment with

  • numpy
  • matplotlib
  • pandas
  • pytorch (version 1.8.1)

These dependencies may be installed through the commands:

conda install numpy scipy pandas matplotlib
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

Citing

If you find this project useful, we encourage you to

  • Star this repository ⭐
  • Cite the paper

To cite the paper, you may use the following BibTex entry:

@article{forgione2022adapt,
  title={On the adaptation of recurrent neural networks for system identification},
  author={Forgione, M. and Muni, A. and Piga, D. and Gallieri, M.},
  journal={arXiv e-prints arXiv:2201.08660},
  year={2022}
}

Using the IEEEtran bibliography style, it should look like:

M. Forgione, A. Muni, D. Piga, and M. Gallieri, "On the adaptation of recurrent neural networks for system identification," arXiv preprint arXiv:2201.08660, 2022.

Bibliography

[1] W. Maddox, S. Tang, P. Moreno, A. Wilson, and A. Damianou, "Fast Adaptation with Linearized Neural Networks,"
in Proc. of the International Conference on Artificial Intelligence and Statistics, 2021.

Owner
Marco Forgione
Researcher in Automatic Control and Machine Learning at the Dalle Molle Institute for Artificial Intelligence (IDSIA), Switzerland
Marco Forgione
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. πŸ’œ

Hacktober Fest 2021 πŸŽ‰ Open source is changing the world – one contribution at a time! πŸŽ‰ This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Facebook Research 605 Jan 02, 2023
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction πŸ› οΈ Pytorch implementation of different VAE models to model heterogeneous data. Here,

AdriΓ‘n Javaloy 35 Nov 29, 2022