Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

Overview

MaskCycleGAN-VC

Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion.

MaskCycleGAN-VC is the state of the art method for non-parallel voice conversion using CycleGAN. It is trained using a novel auxiliary task of filling in frames (FIF) by applying a temporal mask to the input Mel-spectrogram. It demonstrates marked improvements over prior models such as CycleGAN-VC (2018), CycleGAN-VC2 (2019), and CycleGAN-VC3 (2020).


Figure1: MaskCycleGAN-VC Training




Figure2: MaskCycleGAN-VC Generator Architecture




Figure3: MaskCycleGAN-VC PatchGAN Discriminator Architecture



Paper: https://arxiv.org/pdf/2102.12841.pdf

Repository Contributors: Claire Pajot, Hikaru Hotta, Sofian Zalouk

Setup

Clone the repository.

git clone [email protected]:GANtastic3/MaskCycleGAN-VC.git
cd MaskCycleGAN-VC

Create the conda environment.

conda env create -f environment.yml
conda activate MaskCycleGAN-VC

VCC2018 Dataset

The authors of the paper used the dataset from the Spoke task of Voice Conversion Challenge 2018 (VCC2018). This is a dataset of non-parallel utterances from 6 male and 6 female speakers. Each speaker utters approximately 80 sentences.

Download the dataset from the command line.

wget --no-check-certificate https://datashare.ed.ac.uk/bitstream/handle/10283/3061/vcc2018_database_training.zip?sequence=2&isAllowed=y
wget --no-check-certificate https://datashare.ed.ac.uk/bitstream/handle/10283/3061/vcc2018_database_evaluation.zip?sequence=3&isAllowed=y
wget --no-check-certificate https://datashare.ed.ac.uk/bitstream/handle/10283/3061/vcc2018_database_reference.zip?sequence=5&isAllowed=y

Unzip the dataset file.

mkdir vcc2018
apt-get install unzip
unzip vcc2018_database_training.zip?sequence=2 -d vcc2018/
unzip vcc2018_database_evaluation.zip?sequence=3 -d vcc2018/
unzip vcc2018_database_reference.zip?sequence=5 -d vcc2018/
mv -v vcc2018/vcc2018_reference/* vcc2018/vcc2018_evaluation
rm -rf vcc2018/vcc2018_reference

Data Preprocessing

To expedite training, we preprocess the dataset by converting waveforms to melspectograms, then save the spectrograms as pickle files normalized.pickle and normalization statistics (mean, std) as npz files _norm_stats.npz. We convert waveforms to spectrograms using a melgan vocoder to ensure that you can decode voice converted spectrograms to waveform and listen to your samples during inference.

python data_preprocessing/preprocess_vcc2018.py \
  --data_directory vcc2018/vcc2018_training \
  --preprocessed_data_directory vcc2018_preprocessed/vcc2018_training \
  --speaker_ids VCC2SF1 VCC2SF2 VCC2SF3 VCC2SF4 VCC2SM1 VCC2SM2 VCC2SM3 VCC2SM4 VCC2TF1 VCC2TF2 VCC2TM1 VCC2TM2
python data_preprocessing/preprocess_vcc2018.py \
  --data_directory vcc2018/vcc2018_evaluation \
  --preprocessed_data_directory vcc2018_preprocessed/vcc2018_evaluation \
  --speaker_ids VCC2SF1 VCC2SF2 VCC2SF3 VCC2SF4 VCC2SM1 VCC2SM2 VCC2SM3 VCC2SM4 VCC2TF1 VCC2TF2 VCC2TM1 VCC2TM2

Training

Train MaskCycleGAN-VC to convert between and . You should start to get excellent results after only several hundred epochs.

python -W ignore::UserWarning -m mask_cyclegan_vc.train \
    --name mask_cyclegan_vc__ \
    --seed 0 \
    --save_dir results/ \
    --preprocessed_data_dir vcc2018_preprocessed/vcc2018_training/ \
    --speaker_A_id  \
    --speaker_B_id  \
    --epochs_per_save 100 \
    --epochs_per_plot 10 \
    --num_epochs 6172 \
    --batch_size 1 \
    --lr 5e-4 \
    --decay_after 1e4 \
    --sample_rate 22050 \
    --num_frames 64 \
    --max_mask_len 25 \
    --gpu_ids 0 \

To continue training from a previous checkpoint in the case that training is suspended, add the argument --continue_train while keeping all others the same. The model saver class will automatically load the most recently saved checkpoint and resume training.

Launch Tensorboard in a separate terminal window.

tensorboard --logdir results/logs

Testing

Test your trained MaskCycleGAN-VC by converting between and on the evaluation dataset. Your converted .wav files are stored in results//converted_audio.

python -W ignore::UserWarning -m mask_cyclegan_vc.test \
    --name mask_cyclegan_vc_VCC2SF3_VCC2TF1 \
    --save_dir results/ \
    --preprocessed_data_dir vcc2018_preprocessed/vcc2018_evaluation \
    --gpu_ids 0 \
    --speaker_A_id VCC2SF3 \
    --speaker_B_id VCC2TF1 \
    --ckpt_dir /data1/cycleGAN_VC3/mask_cyclegan_vc_VCC2SF3_VCC2TF1/ckpts \
    --load_epoch 500 \
    --model_name generator_A2B \

Toggle between A->B and B->A conversion by setting --model_name as either generator_A2B or generator_B2A.

Select the epoch to load your model from by setting --load_epoch.

Code Organization

├── README.md                       <- Top-level README.
├── environment.yml                 <- Conda environment
├── .gitignore
├── LICENSE
|
├── args
│   ├── base_arg_parser             <- arg parser
│   ├── train_arg_parser            <- arg parser for training (inherits base_arg_parser)
│   ├── cycleGAN_train_arg_parser   <- arg parser for training MaskCycleGAN-VC (inherits train_arg_parser)
│   ├── cycleGAN_test_arg_parser    <- arg parser for testing MaskCycleGAN-VC (inherits base_arg_parser)
│
├── bash_scripts
│   ├── mask_cyclegan_train.sh      <- sample script to train MaskCycleGAN-VC
│   ├── mask_cyclegan_test.sh       <- sample script to test MaskCycleGAN-VC
│
├── data_preprocessing
│   ├── preprocess_vcc2018.py       <- preprocess VCC2018 dataset
│
├── dataset
│   ├── vc_dataset.py               <- torch dataset class for MaskCycleGAN-VC
│
├── logger
│   ├── base_logger.sh              <- logging to Tensorboard
│   ├── train_logger.sh             <- logging to Tensorboard during training (inherits base_logger)
│
├── saver
│   ├── model_saver.py              <- saves and loads models
│
├── mask_cyclegan_vc
│   ├── model.py                    <- defines MaskCycleGAN-VC model architecture
│   ├── train.py                    <- training script for MaskCycleGAN-VC
│   ├── test.py                     <- training script for MaskCycleGAN-VC
│   ├── utils.py                    <- utility functions to train and test MaskCycleGAN-VC

Acknowledgements

This repository was inspired by jackaduma's implementation of CycleGAN-VC2.

[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022