Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

Overview

MaskCycleGAN-VC

Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion.

MaskCycleGAN-VC is the state of the art method for non-parallel voice conversion using CycleGAN. It is trained using a novel auxiliary task of filling in frames (FIF) by applying a temporal mask to the input Mel-spectrogram. It demonstrates marked improvements over prior models such as CycleGAN-VC (2018), CycleGAN-VC2 (2019), and CycleGAN-VC3 (2020).


Figure1: MaskCycleGAN-VC Training




Figure2: MaskCycleGAN-VC Generator Architecture




Figure3: MaskCycleGAN-VC PatchGAN Discriminator Architecture



Paper: https://arxiv.org/pdf/2102.12841.pdf

Repository Contributors: Claire Pajot, Hikaru Hotta, Sofian Zalouk

Setup

Clone the repository.

git clone [email protected]:GANtastic3/MaskCycleGAN-VC.git
cd MaskCycleGAN-VC

Create the conda environment.

conda env create -f environment.yml
conda activate MaskCycleGAN-VC

VCC2018 Dataset

The authors of the paper used the dataset from the Spoke task of Voice Conversion Challenge 2018 (VCC2018). This is a dataset of non-parallel utterances from 6 male and 6 female speakers. Each speaker utters approximately 80 sentences.

Download the dataset from the command line.

wget --no-check-certificate https://datashare.ed.ac.uk/bitstream/handle/10283/3061/vcc2018_database_training.zip?sequence=2&isAllowed=y
wget --no-check-certificate https://datashare.ed.ac.uk/bitstream/handle/10283/3061/vcc2018_database_evaluation.zip?sequence=3&isAllowed=y
wget --no-check-certificate https://datashare.ed.ac.uk/bitstream/handle/10283/3061/vcc2018_database_reference.zip?sequence=5&isAllowed=y

Unzip the dataset file.

mkdir vcc2018
apt-get install unzip
unzip vcc2018_database_training.zip?sequence=2 -d vcc2018/
unzip vcc2018_database_evaluation.zip?sequence=3 -d vcc2018/
unzip vcc2018_database_reference.zip?sequence=5 -d vcc2018/
mv -v vcc2018/vcc2018_reference/* vcc2018/vcc2018_evaluation
rm -rf vcc2018/vcc2018_reference

Data Preprocessing

To expedite training, we preprocess the dataset by converting waveforms to melspectograms, then save the spectrograms as pickle files normalized.pickle and normalization statistics (mean, std) as npz files _norm_stats.npz. We convert waveforms to spectrograms using a melgan vocoder to ensure that you can decode voice converted spectrograms to waveform and listen to your samples during inference.

python data_preprocessing/preprocess_vcc2018.py \
  --data_directory vcc2018/vcc2018_training \
  --preprocessed_data_directory vcc2018_preprocessed/vcc2018_training \
  --speaker_ids VCC2SF1 VCC2SF2 VCC2SF3 VCC2SF4 VCC2SM1 VCC2SM2 VCC2SM3 VCC2SM4 VCC2TF1 VCC2TF2 VCC2TM1 VCC2TM2
python data_preprocessing/preprocess_vcc2018.py \
  --data_directory vcc2018/vcc2018_evaluation \
  --preprocessed_data_directory vcc2018_preprocessed/vcc2018_evaluation \
  --speaker_ids VCC2SF1 VCC2SF2 VCC2SF3 VCC2SF4 VCC2SM1 VCC2SM2 VCC2SM3 VCC2SM4 VCC2TF1 VCC2TF2 VCC2TM1 VCC2TM2

Training

Train MaskCycleGAN-VC to convert between and . You should start to get excellent results after only several hundred epochs.

python -W ignore::UserWarning -m mask_cyclegan_vc.train \
    --name mask_cyclegan_vc__ \
    --seed 0 \
    --save_dir results/ \
    --preprocessed_data_dir vcc2018_preprocessed/vcc2018_training/ \
    --speaker_A_id  \
    --speaker_B_id  \
    --epochs_per_save 100 \
    --epochs_per_plot 10 \
    --num_epochs 6172 \
    --batch_size 1 \
    --lr 5e-4 \
    --decay_after 1e4 \
    --sample_rate 22050 \
    --num_frames 64 \
    --max_mask_len 25 \
    --gpu_ids 0 \

To continue training from a previous checkpoint in the case that training is suspended, add the argument --continue_train while keeping all others the same. The model saver class will automatically load the most recently saved checkpoint and resume training.

Launch Tensorboard in a separate terminal window.

tensorboard --logdir results/logs

Testing

Test your trained MaskCycleGAN-VC by converting between and on the evaluation dataset. Your converted .wav files are stored in results//converted_audio.

python -W ignore::UserWarning -m mask_cyclegan_vc.test \
    --name mask_cyclegan_vc_VCC2SF3_VCC2TF1 \
    --save_dir results/ \
    --preprocessed_data_dir vcc2018_preprocessed/vcc2018_evaluation \
    --gpu_ids 0 \
    --speaker_A_id VCC2SF3 \
    --speaker_B_id VCC2TF1 \
    --ckpt_dir /data1/cycleGAN_VC3/mask_cyclegan_vc_VCC2SF3_VCC2TF1/ckpts \
    --load_epoch 500 \
    --model_name generator_A2B \

Toggle between A->B and B->A conversion by setting --model_name as either generator_A2B or generator_B2A.

Select the epoch to load your model from by setting --load_epoch.

Code Organization

├── README.md                       <- Top-level README.
├── environment.yml                 <- Conda environment
├── .gitignore
├── LICENSE
|
├── args
│   ├── base_arg_parser             <- arg parser
│   ├── train_arg_parser            <- arg parser for training (inherits base_arg_parser)
│   ├── cycleGAN_train_arg_parser   <- arg parser for training MaskCycleGAN-VC (inherits train_arg_parser)
│   ├── cycleGAN_test_arg_parser    <- arg parser for testing MaskCycleGAN-VC (inherits base_arg_parser)
│
├── bash_scripts
│   ├── mask_cyclegan_train.sh      <- sample script to train MaskCycleGAN-VC
│   ├── mask_cyclegan_test.sh       <- sample script to test MaskCycleGAN-VC
│
├── data_preprocessing
│   ├── preprocess_vcc2018.py       <- preprocess VCC2018 dataset
│
├── dataset
│   ├── vc_dataset.py               <- torch dataset class for MaskCycleGAN-VC
│
├── logger
│   ├── base_logger.sh              <- logging to Tensorboard
│   ├── train_logger.sh             <- logging to Tensorboard during training (inherits base_logger)
│
├── saver
│   ├── model_saver.py              <- saves and loads models
│
├── mask_cyclegan_vc
│   ├── model.py                    <- defines MaskCycleGAN-VC model architecture
│   ├── train.py                    <- training script for MaskCycleGAN-VC
│   ├── test.py                     <- training script for MaskCycleGAN-VC
│   ├── utils.py                    <- utility functions to train and test MaskCycleGAN-VC

Acknowledgements

This repository was inspired by jackaduma's implementation of CycleGAN-VC2.

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022