Editing a Conditional Radiance Field

Related tags

Deep Learningeditnerf
Overview

Editing Conditional Radiance Fields

Project | Paper | Video | Demo

Editing Conditional Radiance Fields
Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu, Bryan Russell
MIT, Adobe Research, CMU
in arXiv:2105.06466, 2021.

Editing Results

Color Editing


Our method propagates sparse 2D user scribbles to fill an object region, rendering the edit consistently across views. The user provides a color, a foreground scribble for the region to change, and a background scribble for regions to keep unchanged. To conduct the edit, we optimize a reconstruction-based loss to encourage the model to change the color at the foreground scribble, but maintain the color on the background scribbles.

Shape Editing


Our method propagates 2D user edits to remove or add an object part, propagating the 2D edit consistently across views. For shape removal, the user scribbles over a region of the object to remove. To conduct the removal, we optimize both a reconstruction loss and a density-based loss, encouraging the model to remove density at the scribbled regions. For shape addition, the user selects an object part to paste into the instance. To conduct the addition, we optimize a reconstruction loss similar to the one used for color editing.

Color and Shape Transfer


Our method can transfer shape and color between object instances simply by swapping the color and shape codes between instances.

Editing a Real Image


Our method is able to render novel views of the real object instance and conduct color and shape editing on the instance.

Method


To propagate sparse 2D user scribbles to novel views, we learn a rich prior of plausible-looking objects by training a single radiance field over several object instances. Our architecture builds on NeRF in two ways. First, we introduce shape and color codes for each instance, allowing a single radiance field to represent multiple object instances. Second, we introduce an instance independent shape branch, which learns a generic representation of the object category. Due to our modular architecture design, only a few components of our network need to be modified during editing to effectively execute the user edit.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/stevliu/editnerf.git
cd editnerf
  • Install the dependencies
bash scripts/setup_env.sh
  • Obtain pre-trained models and editing examples:
bash scripts/setup_models.sh
  • Optionally, download the relevant datasets. This step is required to evaluate edits and for training/testing a conditional radiance field:
bash scripts/setup_data.sh

Our code is tested on using Python 3.6, PyTorch 1.3.1, and CUDA 10.1.

Editing a Conditional Radiance Field

To conduct your own edits, please check out our demo. Alternatively, you can run the demo locally using jupyter notebook and using the notebook ui/editing.ipynb.

To execute the edits used in our paper, please run:

bash scripts/editing_experiments.sh

To evaluate the edits used in our paper, please run:

bash scripts/evaluate_edits.sh

Feel free to check out additional editing examples, which can be run via scripts/additional_edits.sh.

Learning a Conditional Radiance Field

Training

To train a conditional radiance field on the PhotoShapes dataset, please run:

python run_nerf.py --config configs/photoshapes/config.txt --skip_loading

The --skip_loading flag tells the script not to load the pretrained weights during training.

To train on other datasets, or use a different model architecture, you can replace the config file with your own. Feel free to check out example config files under configs/. For additional training options, please visit inputs.py.

Evaluation

To render train and test views from a conditional radiance field, you can run:

python test_nerf.py --config config-file --render_test --render_train

where config-file is the same config file used during training.

Then, to run evaluation metrics on the rendered samples, you can run:

python utils/evaluate_reconstruction.py --expdir path-to-log-dir

To evaluate the conditional radiance fields used in our paper, please run:

bash scripts/reconstruction_experiments.sh

Training and Editing Your Own Models

To train a model on a different dataset, first setup the directory to store the dataset. The structure should be

data/
    datasetname/
        instances.txt
        instance_name1
            images
            transforms_train.json
            transforms_val.json
            trainsforms_test.json
        instance_name2
            ...
        ...

Each instance subdirectory should contain transforms_train.json, transforms_test.json, and transforms_val.json. Each of these .json files should contain the camera focal, as well as the camera extrinsics for each image. Please refer to data/photoshapes/shape09135_rank02/transforms_train.json for an example. instances.txt should contain a list of the instance names.

Then you can run python run_nerf.py --config config-file to train a conditional radiance field, and evaluate it using the instructions in the above section.

To edit the conditional radiance field, first make a directory in ui which will contain all the relevant data for the model. Then, copy over the config file, model weights, camera intrinsics, and camera extrinsics (last three are automatically saved under logs/). The directory structure should be

ui/
    datasetname/
        model.tar
        hwfs.npy
        poses.npy
        config.txt

Please refer to ui/photoshapes for an example.

Editing a Real Image

To edit a real image, we first decide on a base model to finetune to the real image. In our experiments, we use the Dosovitskiy chairs model. Then, visually estimate the pose of the image. One way to do this is by finding the nearest neighbor pose in the training set of the base model. Then, construct the dataset folder containing the .json files mentioned in the above section.

The directory structure should be

realchairname/
    images
    transforms_train.json
    transforms_val.json
    trainsforms_test.json

As an example, please refer to data/real_chairs/shape00001_charlton.

To finetune the radiance field on this image, you can run

python run_nerf.py --config base-config --real_image_dir data-dir --savedir savedir --n_iters_code_only 1000 --style_optimizer lbfgs

where base-config is the model to fit, data_dir is the directory containing the real images, and savedir is where you want to save the results. The last two flags tell the training script to first finetune the shape and color codes using LBFGS. Please refer to scripts/reconstruction_experiments.sh for an example.

To edit this instance, copy the finetuned model weights from savedir and to a subdirectory of the base model in ui. Then, copy over the camera intrinsics and camera extrinsics (located under logs/). The directory structure should be

ui/
    basemodel/
        realchair/
            model.tar
            hwfs.npy
            poses.npy

Please refer to ui/dosovitskiy_chairs/real_chair for an example.

Acknowledgments

This codebase is heavily based on the nerf-pytorch code base, and our user interface is heavily based on the GAN rewriting interface. We also use LBFGS code from PyTorch-LBFGS and job scheduling code from the GAN seeing codebase.

We thank all authors for the wonderful code!

Citation

If you use this code for your research, please cite the following work.

@misc{liu2021editing,
      title={Editing Conditional Radiance Fields},
      author={Steven Liu and Xiuming Zhang and Zhoutong Zhang and Richard Zhang and Jun-Yan Zhu and Bryan Russell},
      year={2021},
      eprint={2105.06466},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022