Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Overview

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding

PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) paper.

Method Description

Distilled Sentence Embedding (DSE) distills knowledge from a finetuned state-of-the-art transformer model (BERT) to create high quality sentence embeddings. For a complete description, as well as implementation details and hyperparameters, please refer to the paper.

Usage

Follow the instructions below in order to run the training procedure of the Distilled Sentence Embedding (DSE) method. The python scripts below can be run with the -h parameter to get more information.

1. Install Requirements

Tested with Python 3.6+.

pip install -r requirements.txt

2. Download GLUE Datasets

Run the download_glue_data.py script to download the GLUE datasets.

python download_glue_data.py

3. Finetune BERT on a Specific Task

Finetune a standard BERT model on a specific task (e.g., MRPC, MNLI, etc.). Below is an example for the MRPC dataset.

python finetune_bert.py \
--bert_model bert-large-uncased-whole-word-masking \
--task_name mrpc \
--do_train \
--do_eval \
--do_lower_case \
--data_dir glue_data/MRPC \
--max_seq_length 128 \
--train_batch_size 32 \
--gradient_accumulation_steps 2 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir outputs/large_uncased_finetuned_mrpc \
--overwrite_output_dir \
--no_parallel

Note: For our code to work with the AllNLI dataset (a combination of the MNLI and SNLI datasets), you simply need to create a folder where the downloaded GLUE datasets are and copy the MNLI and SNLI datasets into it.

4. Create Logits for Distillation from the Finetuned BERT

Execute the following command to create the logits which will be used for the distillation training objective. Note that the bert_checkpoint_dir parameter has to match the output_dir from the previous command.

python run_distillation_logits_creator.py \
--task_name mrpc \
--data_dir glue_data/MRPC \
--do_lower_case \
--train_features_path glue_data/MRPC/train_bert-large-uncased-whole-word-masking_128_mrpc \
--bert_checkpoint_dir outputs/large_uncased_finetuned_mrpc

5. Train the DSE Model using the Finetuned BERT Logits

Train the DSE model using the extracted logits. Notice that the distillation_logits_path parameter needs to be changed according to the task.

python dse_train_runner.py \
--task_name mrpc \
--data_dir glue_data/MRPC \
--distillation_logits_path outputs/logits/large_uncased_finetuned_mrpc_logits.pt \
--do_lower_case \
--file_log \
--epochs 8 \
--store_checkpoints \
--fc_dims 512 1

Important Notes:

  • To store checkpoints for the model make sure that the --store_checkpoints flag is passed as shown above.
  • The fc_dims parameter accepts a list of space separated integers, and is the dimensions of the fully connected classifier that is put on top of the extracted features from the Siamese DSE model. The output dimension (in this case 1) needs to be changed according to the wanted output dimensionality. For example, for the MNLI dataset the fc_dims parameter should be 512 3 since it is a 3 class classification task.

6. Loading the Trained DSE Model

During training, checkpoints of the Trainer object which contains the model will be saved. You can load these checkpoints and extract the model state dictionary from them. Then you can load the state into a created DSESiameseClassifier model. The load_dse_checkpoint_example.py script contains an example of how to do that.

To load the model trained with the example commands above you can use:

python load_dse_checkpoint_example.py \
--task_name mrpc \
--trainer_checkpoint <path_to_saved_checkpoint> \
--do_lower_case \
--fc_dims 512 1

Acknowledgments

Citation

If you find this code useful, please cite the following paper:

@inproceedings{barkan2020scalable,
  title={Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding},
  author={Barkan, Oren and Razin, Noam and Malkiel, Itzik and Katz, Ori and Caciularu, Avi and Koenigstein, Noam},
  booktitle={AAAI Conference on Artificial Intelligence (AAAI)},
  year={2020}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022