3D cascade RCNN for object detection on point cloud

Overview

3D Cascade RCNN

This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds.

We designed a 3D object detection model on point clouds by:

  • Presenting a simple yet effective 3D cascade architecture
  • Analyzing the sparsity of the point clouds and using point completeness score to re-weighting training samples. Following is detection results on Waymo Open Dataset.

Results on KITTI

Easy Car Moderate Car Hard Car
AP 11 90.05 86.02 79.27
AP 40 93.20 86.19 83.48

Results on Waymo

Overall Vehicle 0-30m Vehicle 30-50m Vehicle 50m-Inf Vehicle
LEVEL_1 mAP 76.27 92.66 74.99 54.49
LEVEL_2 mAP 67.12 91.95 68.96 41.82

Installation

  1. Requirements. The code is tested on the following environment:
  • Ubuntu 16.04 with 4 V100 GPUs
  • Python 3.7
  • Pytorch 1.7
  • CUDA 10.1
  • spconv 1.2.1
  1. Build extensions
python setup.py develop

Getting Started

Prepare for the data.

Please download the official KITTI dataset and generate data infos by following command:

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/kitti_dataset.yaml

The folder should be like:

data
├── kitti
│   │── ImageSets
│   │── training
│   │   ├──calib & velodyne & label_2 & image_2
│   │── testing
│   │   ├──calib & velodyne & image_2
|   |── kitti_dbinfos_train.pkl
|   |── kitti_infos_train.pkl
|   |── kitti_infos_val.pkl

Training and evaluation.

The configuration file is in tools/cfgs/3d_cascade_rcnn.yaml, and the training scripts is in tools/scripts.

cd tools
sh scripts/3d-cascade-rcnn.sh

Test a pre-trained model

The pre-trained KITTI model is at: model. Run with:

cd tools
sh scripts/3d-cascade-rcnn_test.sh

The evaluation results should be like:

2021-08-10 14:06:14,608   INFO  Car [email protected], 0.70, 0.70:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:90.6405, 89.0829, 88.4391
3d   AP:90.0468, 86.0168, 79.2661
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.70, 0.70:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:96.3107, 92.4128, 89.9473
3d   AP:93.1961, 86.1857, 83.4783
aos  AP:99.13, 95.65, 93.03
Car [email protected], 0.50, 0.50:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:98.0539, 97.1877, 89.7716
3d   AP:97.9921, 90.1001, 89.7393
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.50, 0.50:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:99.1943, 97.8180, 95.5420
3d   AP:99.1717, 95.8046, 95.4500
aos  AP:99.13, 95.65, 93.03

Acknowledge

The code is built on OpenPCDet and Voxel R-CNN.

Owner
Qi Cai
Qi Cai
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022