Code for the paper "Next Generation Reservoir Computing"

Overview

Next Generation Reservoir Computing

This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written in Python, and require recent versions of NumPy, SciPy, and matplotlib. If you are using a Python environment like Anaconda, these are likely already installed.

Python Virtual Environment

If you are not using Anaconda, or want to run this code on the command line in vanilla Python, you can create a virtual environment with the required dependencies by running:

python3 -m venv env
./env/bin/pip install -r requirements.txt

This will install the most recent version of the requirements available to you. If you wish to use the exact versions we used, use requirements-exact.txt instead.

You can then run the individual scripts, for example:

./env/bin/python DoubleScrollNVAR-RK23.py
You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Code for our CVPR 2021 paper
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

Comments
  • Generalized Performance

    Generalized Performance

    I modified the code given in this repo to what I think is a more generalized version (below) where the input is an array containing points generated by any sort of process. It gives a perfect result on predicting sin functions, but on a constant linear trend gives absolutely terrible, nonsense performance. By my understanding, that is simply the nature of reservoir computing, it can't handle a trend. Is that correct?

    I would also appreciate any other insight you might have on the generalization of this function. Thanks!

    import numpy as np
    import pandas as pd
    
    
    def load_linear(long=False, shape=None, start_date: str = "2021-01-01"):
        """Create a dataset of just zeroes for testing edge case."""
        if shape is None:
            shape = (500, 5)
        df_wide = pd.DataFrame(
            np.ones(shape), index=pd.date_range(start_date, periods=shape[0], freq="D")
        )
        df_wide = (df_wide * list(range(0, shape[1]))).cumsum()
        if not long:
            return df_wide
        else:
            df_wide.index.name = "datetime"
            df_long = df_wide.reset_index(drop=False).melt(
                id_vars=['datetime'], var_name='series_id', value_name='value'
            )
            return df_long
    
    
    def load_sine(long=False, shape=None, start_date: str = "2021-01-01"):
        """Create a dataset of just zeroes for testing edge case."""
        if shape is None:
            shape = (500, 5)
        df_wide = pd.DataFrame(
            np.ones(shape),
            index=pd.date_range(start_date, periods=shape[0], freq="D"),
            columns=range(shape[1])
        )
        X = pd.to_numeric(df_wide.index, errors='coerce', downcast='integer').values
    
        def sin_func(a, X):
            return a * np.sin(1 * X) + a
        for column in df_wide.columns:
            df_wide[column] = sin_func(column, X)
        if not long:
            return df_wide
        else:
            df_wide.index.name = "datetime"
            df_long = df_wide.reset_index(drop=False).melt(
                id_vars=['datetime'], var_name='series_id', value_name='value'
            )
            return df_long
    
    
    def predict_reservoir(df, forecast_length, warmup_pts, k=2, ridge_param=2.5e-6):
        # k =  # number of time delay taps
        # pass in traintime_pts to limit as .tail() for huge datasets?
    
        n_pts = df.shape[1]
        # handle short data edge case
        min_train_pts = 10
        max_warmup_pts = n_pts - min_train_pts
        if warmup_pts >= max_warmup_pts:
            warmup_pts = max_warmup_pts if max_warmup_pts > 0 else 0
    
        traintime_pts = n_pts - warmup_pts   # round(traintime / dt)
        warmtrain_pts = warmup_pts + traintime_pts
        testtime_pts = forecast_length + 1  # round(testtime / dt)
        maxtime_pts = n_pts  # round(maxtime / dt)
    
        # input dimension
        d = df.shape[0]
        # size of the linear part of the feature vector
        dlin = k * d
        # size of nonlinear part of feature vector
        dnonlin = int(dlin * (dlin + 1) / 2)
        # total size of feature vector: constant + linear + nonlinear
        dtot = 1 + dlin + dnonlin
    
        # create an array to hold the linear part of the feature vector
        x = np.zeros((dlin, maxtime_pts))
    
        # fill in the linear part of the feature vector for all times
        for delay in range(k):
            for j in range(delay, maxtime_pts):
                x[d * delay : d * (delay + 1), j] = df[:, j - delay]
    
        # create an array to hold the full feature vector for training time
        # (use ones so the constant term is already 1)
        out_train = np.ones((dtot, traintime_pts))
    
        # copy over the linear part (shift over by one to account for constant)
        out_train[1 : dlin + 1, :] = x[:, warmup_pts - 1 : warmtrain_pts - 1]
    
        # fill in the non-linear part
        cnt = 0
        for row in range(dlin):
            for column in range(row, dlin):
                # shift by one for constant
                out_train[dlin + 1 + cnt] = (
                    x[row, warmup_pts - 1 : warmtrain_pts - 1]
                    * x[column, warmup_pts - 1 : warmtrain_pts - 1]
                )
                cnt += 1
    
        # ridge regression: train W_out to map out_train to Lorenz[t] - Lorenz[t - 1]
        W_out = (
            (x[0:d, warmup_pts:warmtrain_pts] - x[0:d, warmup_pts - 1 : warmtrain_pts - 1])
            @ out_train[:, :].T
            @ np.linalg.pinv(
                out_train[:, :] @ out_train[:, :].T + ridge_param * np.identity(dtot)
            )
        )
    
        # create a place to store feature vectors for prediction
        out_test = np.ones(dtot)  # full feature vector
        x_test = np.zeros((dlin, testtime_pts))  # linear part
    
        # copy over initial linear feature vector
        x_test[:, 0] = x[:, warmtrain_pts - 1]
    
        # do prediction
        for j in range(testtime_pts - 1):
            # copy linear part into whole feature vector
            out_test[1 : dlin + 1] = x_test[:, j]  # shift by one for constant
            # fill in the non-linear part
            cnt = 0
            for row in range(dlin):
                for column in range(row, dlin):
                    # shift by one for constant
                    out_test[dlin + 1 + cnt] = x_test[row, j] * x_test[column, j]
                    cnt += 1
            # fill in the delay taps of the next state
            x_test[d:dlin, j + 1] = x_test[0 : (dlin - d), j]
            # do a prediction
            x_test[0:d, j + 1] = x_test[0:d, j] + W_out @ out_test[:]
        return x_test[0:d, 1:]
    
    
    # note transposed from the opposite of my usual shape
    data_pts = 7000
    series = 3
    forecast_length = 10
    df_sine = load_sine(long=False, shape=(data_pts, series)).transpose().to_numpy()
    df_sine_train = df_sine[:, :-10]
    df_sine_test = df_sine[:, -10:]
    prediction_sine = predict_reservoir(df_sine_train, forecast_length=forecast_length, warmup_pts=150, k=2, ridge_param=2.5e-6)
    print(f"sine MAE {np.mean(np.abs(df_sine_test - prediction_sine))}")
    
    df_linear = load_linear(long=False, shape=(data_pts, series)).transpose().to_numpy()
    df_linear_train = df_linear[:, :-10]
    df_linear_test = df_linear[:, -10:]
    prediction_linear = predict_reservoir(df_linear_train, forecast_length=forecast_length, warmup_pts=150, k=2, ridge_param=2.5e-6)
    print(f"linear MAE {np.mean(np.abs(df_linear_test - prediction_linear))}")
    
    
    opened by winedarksea 2
  • Link to your paper

    Link to your paper

    I'm documenting here the link to your paper. I couldn't find it in the readme:


    Next generation reservoir computing

    Daniel J. Gauthier, Erik Bollt, Aaron Griffith & Wendson A. S. Barbosa 
    

    Nature Communications volume 12, Article number: 5564 (2021) https://www.nature.com/articles/s41467-021-25801-2

    opened by impredicative 1
Releases(v1.0)
Owner
OSU QuantInfo Lab
Daniel Gauthier's Research Group
OSU QuantInfo Lab
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

JugLab 33 Dec 30, 2022
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022