How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Related tags

Deep Learningcodemix
Overview

This repo contains codes for the following paper:

How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.
Aditya Shah, Chandresh Kumar Maurya, In Proceedings of the 18th International Conference on Natural Language Processing - (ACL 2021).

The presentation slides are available here

Requirements

Python 3.6 or higher
Pytorch >= 1.3.0
Pytorch_transformers (also known as transformers)
Pandas, Numpy, Pickle
Fasttext

Download the fasttext embed file:

The fasttext embedding file can be obtained here

Dataset

We release the benchmark sarcasm dataset for Hinglish language to facilitate further research on code-mix NLP.

We create a dataset using TweetScraper built on top of scrapy to extract code-mix hindi-english tweets. We pass search tags like #sarcasm, #humor, #bollywood, #cricket, etc., combined with most commonly used code-mix Hindi words as query. All the tweets with hashtags like #sarcasm, #sarcastic, #irony, #humor etc. are treated as positive. Non sarcastic tweets are extracted using general hashtags like #politics, #food, #movie, etc. The balanced dataset comprises of 166K tweets.

Finally, we preprocess and clean the data by removing urls, hashtags, mentions, and punctuation in the data. The respective files can be found here as train.csv, val.csv, and test.csv

Arguments:

--epochs:  number of total epochs to run, default=10

--batch-size: train batchsize, default=2

--lr: learning rate for the model, default=5.16e-05

--hidden_size_lstm: hidden size of lstm, default=1024

--hidden_size_linear: hidden size of linear layer, default=128

--seq_len: sequence lenght of input text, default=56

--clip: gradient clipping, default=0.218

--dropout: dropout value, default=0.198

--num_layers: number of lstm layers, default=1

--lstm_bidirectional: bidirectional lstm, default=False

--fasttext_embed_file: path to fasttext embedding file, default='new_hing_emb'

--train_dir: path to train file, default='train.csv'

--valid_dir: path to validation file, default='valid.csv'

--test_dir: path to test file, default='test.csv'

--checkpoint_dir: path to the saved, default='selfnet.pt'

--test: testing the model, default=False

Train

python main.py

Test

python main.py --test True

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
đŸ„A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022