[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Overview

Structured Sparse R-CNN for Direct Scene Graph Generation

Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVPR 2022.

Requirements

Environments: python 3.8, cuda 10.1, pytorch 1.7.1

To install requirements:

conda create --name scene_graph_benchmark
conda activate scene_graph_benchmark

pip install --user ipython
pip install --user scipy
pip install --user h5py
pip install --user pyyaml
pip install --user yacs
pip install --user scipy
pip install --user h5py
pip install --user tqdm
pip install --user opencv-python

pip install --user ninja yacs cython matplotlib tqdm opencv-python overrides


conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext

# put our code SGGbench into your directory, such as /home/username
cd /home/username/SGGbench 
python setup.py build develop

Datasets

VG

For the dataset and pretrained backbone weights preparation, please follow: Scene-Graph-Benchmark.pytorch

OI v4, v6

For the datasets and pretrained backbone weights preparation, please follow: BGNN-SGG. Actually, BGNN-SGG is also compatible with Scene-Graph-Benchmark.pytorch.

Training

VG

On VG, we notice ~0.2 [email protected] noise for our model with 300 queries.

To train the model with 300 triplet queries in the paper, run this command. The results are [email protected]: 36.9; [email protected]: 3.7; [email protected]: 10.0: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

To train the model with 800 triplet queries in the paper, run this command. The results are [email protected]: 38.4; [email protected]: 4.0; [email protected]: 10.3: (8 V100 32G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

To train the model with 300 triplet queries and backbone, run this command. The results are [email protected]: 36.7; [email protected]: 3.8; [email protected]: 10.1: (8 V100 32G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" SOLVER.BACKBONE_MULTIPLIER 0.1 MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel_bkb MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE False MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

OI V4

To train the model with 300 triplet queries in the paper, run this command: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/iov4_pretrain_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

OI V6

To train the model with 300 triplet queries in the paper, run this command: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/iov6_pretrain_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

Evaluation

VG

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with TDE, run:

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS True MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la03_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la03_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

800 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=3,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with TDE, run:

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS True MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=3,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/LA03_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'LA03_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

OI V4

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

OI V6

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

Pre-trained Models

You can download pretrained models here:

VG

300 queries

800 queries

OI V4

300 queries

OI V6

300 queries

Results

Our model achieves the following performance on :

Visual Genome

* means 800 queries.

Models SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected]
Our model 25.8 32.7 36.9 1.5 2.7 3.7 6.1 8.4 10.0
Our model* 26.1 33.5 38.4 1.5 2.7 4.0 6.2 8.6 10.3
Our model+TDE 14.5 18.3 21.0 1.8 2.7 3.6 10.8 15.0 18.5
Our model*+TDE 15.0 19.7 22.9 1.6 2.7 3.8 9.8 14.6 18.0
Our model+LA 18.4 23.3 26.5 1.9 2.9 4.0 13.5 17.9 21.4
Our model*+LA 18.2 23.7 27.3 2.0 3.1 4.5 13.7 18.6 22.5

Acknowledgement

Our code is mainly based on: Scene-Graph-Benchmark.pytorch, SparseR-CNN and BGNN-SGG.

For this paper, I'm extremely grateful to my advisor Prof. Limin Wang. I should also appreciate my group members for discussing with me: Jing Tan, Ziteng Gao and Jiaqi Tang.

Citations

@inproceedings{ssrcnnsgg22cvpr,
  author    = {Yao Teng and
               Limin Wang},
  title     = {Structured Sparse {R-CNN} for Direct Scene Graph Generation},
  booktitle = {{CVPR}},
  year      = {2022}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022