Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Overview

Pixel Transposed Convolutional Networks

Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University.

Introduction

Pixel transposed convolutional layer (PixelTCL) is a more effective way to perform up-sampling operations than transposed convolutional layer.

Detailed information about PixelTCL is provided in [arXiv tech report] (https://arxiv.org/abs/1705.06820).

Citation

If using this code, please cite our paper.

@article{gao2017pixel,
  title={Pixel Transposed Convolutional Networks},
  author={Hongyang Gao and Hao Yuan and Zhengyang Wang and Shuiwang Ji},
  journal={arXiv preprint arXiv:1705.06820},
  year={2017}
}

Results

Semantic segmentation

model

Comparison of semantic segmentation results. The first and second rows are images and ground true labels, respectively. The third and fourth rows are the results of using regular transposed convolution and our proposed pixel transposed convolution, respectively.

Generate real images (VAE)

model

Sample face images generated by VAEs when trained on the CelebA dataset. The first two rows are images generated by a standard VAE with transposed convolutional layers for up-sampling. The last two rows are images generated by the same VAE model, but using PixelTCL for up-sampling in the generator network.

System requirement

Programming language

Python 3.5+

Python Packages

tensorflow (CPU) or tensorflow-gpu (GPU), numpy, h5py, progressbar, PIL, scipy

Prepare data

In this project, we provided a set of sample datasets for training, validation, and testing. If want to train on other data such as PASCAL, prepare the h5 files as required. utils/h5_utils.py could be used to generate h5 files.

Configure the network

All network hyperparameters are configured in main.py.

Training

max_step: how many iterations or steps to train

test_step: how many steps to perform a mini test or validation

save_step: how many steps to save the model

summary_step: how many steps to save the summary

Data

data_dir: data directory

train_data: h5 file for training

valid_data: h5 file for validation

test_data: h5 file for testing

batch: batch size

channel: input image channel number

height, width: height and width of input image

Debug

logdir: where to store log

modeldir: where to store saved models

sampledir: where to store predicted samples, please add a / at the end for convinience

model_name: the name prefix of saved models

reload_step: where to return training

test_step: which step to test or predict

random_seed: random seed for tensorflow

Network architecture

network_depth: how deep of the U-Net including the bottom layer

class_num: how many classes. Usually number of classes plus one for background

start_channel_num: the number of channel for the first conv layer

conv_name: use which convolutional layer in decoder. We have conv2d for standard convolutional layer, and ipixel_cl for input pixel convolutional layer proposed in our paper.

deconv_name: use which upsampling layer in decoder. We have deconv for standard transposed convolutional layer, ipixel_dcl for input pixel transposed convolutional layer, and pixel_dcl for pixel transposed convolutional layer proposed in our paper.

Training and Testing

Start training

After configure the network, we can start to train. Run

python main.py

The training of a U-Net for semantic segmentation will start.

Training process visualization

We employ tensorboard to visualize the training process.

tensorboard --logdir=logdir/

The segmentation results including training and validation accuracies, and the prediction outputs are all available in tensorboard.

Testing and prediction

Select a good point to test your model based on validation or other measures.

Fill the test_step in main.py with the checkpoint you want to test, run

python main.py --action=test

The final output include accuracy and mean_iou.

If you want to make some predictions, run

python main.py --action=predict

The predicted segmentation results will be in sampledir set in main.py, colored.

Use PixelDCL in other models

If you want to use pixel transposed convolutional layer in other models, just copy the file

utils/pixel_dcn.py

and use it in your model:


from pixel_dcn import pixel_dcl, ipixel_dcl, ipixel_cl


outputs = pixel_dcl(inputs, out_num, kernel_size, scope)

Currently, this version only support up-sampling by factor 2 such as from 2x2 to 4x4. We may provide more flexible version in the future.

Owner
Hongyang Gao
I am currently an Assistant Professor of Iowa State University. My research interest is deep learning.
Hongyang Gao
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022