Post-training Quantization for Neural Networks with Provable Guarantees

Overview

Post-training Quantization for Neural Networks with Provable Guarantees

Authors: Jinjie Zhang ([email protected]), Yixuan Zhou ([email protected]) and Rayan Saab ([email protected])

Overview

This directory contains code necessary to run a post-training neural-network quantization method GPFQ, that is based on a greedy path-following mechanism. One can also use it to reproduce the experiment results in our paper "Post-training Quantization for Neural Networks with Provable Guarantees". In this paper, we also prove theoretical guarantees for the proposed method, that is, for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights – i.e., level of over-parametrization.

If you make use of this code or our quantization method in your work, please cite the following paper:

 @article{zhang2022posttraining,
     author = {Zhang, Jinjie and Zhou, Yixuan and Saab, Rayan},
     title = {Post-training Quantization for Neural Networks with Provable Guarantees},
     booktitle = {arXiv preprint arXiv:2201.11113},
     year = {2022}
   }

Note: The code is designed to work primarily with the ImageNet dataset. Due to the size of this dataset, it is likely one may need heavier computational resources than a local machine. Nevertheless, the experiments can be run, for example, using a cloud computation center, e.g. AWS. When we run this experiment, we use the m5.8xlarge EC2 instance with a disk space of 300GB.

Installing Dependencies

We assume a python version that is greater than 3.8.0 is installed in the user's machine. In the root directory of this repo, we provide a requirements.txt file for installing the python libraries that will be used in our code.

To install the necessary dependency, one can first start a virtual environment by doing the following:

python3 -m venv .venv
source .venv/bin/activate

The code above should activate a new python virtual environments.

Then one can make use of the requirements.txt by

pip3 install -r requirement.txt

This should install all the required dependencies of this project.

Obtaining ImageNet Dataset

In this project, we make use of the Imagenet dataset, in particular, we use the ILSVRC-2012 version.

To obtain the Imagenet dataset, one can submit a request through this link.

Once the dataset is obtained, place the .tar files for training set and validation set both under the data/ILSVRC2012 directory of this repo.

Then use the following procedure to unzip Imagenet dataset:

tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..
# Extract the validation data and move images to subfolders:
tar -xvf ILSVRC2012_img_val.tar

Running Experiments

The implementation of the modified GPFQ in our paper is contained in quantization_scripts. Additionally, adhoc_quantization_scripts and retraining_scripts provide extra experiments and both of them are variants of the framework in quantization_scripts. adhoc_quantization_scripts contains heuristic modifications used to further improve the performance of GPFQ, such as bias correction, mixed precision, and unquantizing the last layer. retraining_scripts shows a quantization-aware training strategy that is designed to retrain the neural network after each layer is quantized.

In this section, we will give a guidance on running our code contained in quantization_scripts and the implementation of other two counterparts adhoc_quantization_scripts and retraining_scripts are very similar to quantization_scripts.

  1. Before getting started, run in the root directory of the repo and run mkdir modelsto create a directory in which we will store the quantized model.

  2. The entry point of the project starts with quantization_scripts/quantize.py. Once the file is opened, there is a section to set hyperparameters, for example, the model_name parameter, the number of bits/batch size used for quantization, the scalar of alphabets, the probability for subsampling in CNNs etc. Note that the model_name mentioned above should be the same as the model that you will quantize. After you selected a model_name and assuming you are still in the root directory of this repo, run mkdir models/{model_name}, where the {model_name} should be the python string that you provided for the model_name parameter in the quantize.py file. If the directory already exists, you can skip this step.

  3. Then navigate to the logs directory and run python3 init_logs.py. This will prepare a log file which is used to store the results of the experiment.

  4. Finally, open the quantization_scripts directory and run python3 quantize.py to start the experiment.

Owner
Yixuan Zhou
3rd Year UCSD CS double Math undergrad.
Yixuan Zhou
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022