Multi-Task Deep Neural Networks for Natural Language Understanding

Overview

License: MIT Travis-CI

New Release
We released Adversarial training for both LM pre-training/finetuning and f-divergence.

Large-scale Adversarial training for LMs: ALUM code.
If you want to use the old version, please use following cmd to clone the code:
git clone -b v0.1 https://github.com/namisan/mt-dnn.git

Multi-Task Deep Neural Networks for Natural Language Understanding

This PyTorch package implements the Multi-Task Deep Neural Networks (MT-DNN) for Natural Language Understanding, as described in:

Xiaodong Liu*, Pengcheng He*, Weizhu Chen and Jianfeng Gao
Multi-Task Deep Neural Networks for Natural Language Understanding
ACL 2019
*: Equal contribution

Xiaodong Liu, Pengcheng He, Weizhu Chen and Jianfeng Gao
Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding
arXiv version

Pengcheng He, Xiaodong Liu, Weizhu Chen and Jianfeng Gao
Hybrid Neural Network Model for Commonsense Reasoning
arXiv version

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao and Jiawei Han
On the Variance of the Adaptive Learning Rate and Beyond
arXiv version

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao and Tuo Zhao
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
arXiv version

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng, Xueyun Zhu, Emmanuel Awa, Pengcheng He, Weizhu Chen, Hoifung Poon, Guihong Cao, Jianfeng Gao
The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding
arXiv version

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon and Jianfeng Gao
Adversarial Training for Large Neural Language Models
arXiv version

Hao Cheng and Xiaodong Liu and Lis Pereira and Yaoliang Yu and Jianfeng Gao
Posterior Differential Regularization with f-divergence for Improving Model Robustness
arXiv version

Quickstart

Setup Environment

Install via pip:

  1. python3.6
    Reference to download and install : https://www.python.org/downloads/release/python-360/

  2. install requirements
    > pip install -r requirements.txt

Use docker:

  1. Pull docker
    > docker pull allenlao/pytorch-mt-dnn:v0.5

  2. Run docker
    > docker run -it --rm --runtime nvidia allenlao/pytorch-mt-dnn:v1.2 bash
    Please refer to the following link if you first use docker: https://docs.docker.com/

Train a toy MT-DNN model

  1. Download data
    > sh download.sh
    Please refer to download GLUE dataset: https://gluebenchmark.com/

  2. Preprocess data
    > sh experiments/glue/prepro.sh

  3. Training
    > python train.py

Note that we ran experiments on 4 V100 GPUs for base MT-DNN models. You may need to reduce batch size for other GPUs.

GLUE Result reproduce

  1. MTL refinement: refine MT-DNN (shared layers), initialized with the pre-trained BERT model, via MTL using all GLUE tasks excluding WNLI to learn a new shared representation.
    Note that we ran this experiment on 8 V100 GPUs (32G) with a batch size of 32.

    • Preprocess GLUE data via the aforementioned script
    • Training:
      >scripts\run_mt_dnn.sh
  2. Finetuning: finetune MT-DNN to each of the GLUE tasks to get task-specific models.
    Here, we provide two examples, STS-B and RTE. You can use similar scripts to finetune all the GLUE tasks.

    • Finetune on the STS-B task
      > scripts\run_stsb.sh
      You should get about 90.5/90.4 on STS-B dev in terms of Pearson/Spearman correlation.
    • Finetune on the RTE task
      > scripts\run_rte.sh
      You should get about 83.8 on RTE dev in terms of accuracy.

SciTail & SNIL Result reproduce (Domain Adaptation)

  1. Domain Adaptation on SciTail
    >scripts\scitail_domain_adaptation_bash.sh

  2. Domain Adaptation on SNLI
    >scripts\snli_domain_adaptation_bash.sh

Sequence Labeling Task

  1. Preprocess data
    a) Download NER data to data/ner including: {train/valid/test}.txt
    b) Convert NER data to the canonical format: > python experiments\ner\prepro.py --data data\ner --output_dir data\canonical_data
    c) Preprocess the canonical data to the MT-DNN format: > python prepro_std.py --root_dir data\canonical_data --task_def experiments\ner\ner_task_def.yml --model bert-base-uncased

  2. Training
    > python train.py --data_dir <data-path> --init_checkpoint <bert-base-uncased> --train_dataset squad,squad-v2 --test_dataset squad,squad-v2 --task_def experiments\squad\squad_task_def.yml

Question Answer Task

  1. Preprocess data
    a) Download SQuAD data to data/squad including: {train/valid}.txt and then change file name to: {squad_train/squad_dev}.json
    b) Convert data to the MT-DNN format: > python experiments\squad\squad_prepro.py --root_dir data\canonical_data --task_def experiments\squad\squad_task_def.yml --model bert-base-uncased

  2. Training
    > python train.py --data_dir <data-path> --init_checkpoint <bert-model> --train_dataset ner --test_dataset ner --task_def experiments\ner\ner_task_def.yml

SMART

Adv training at the fine-tuning stages: > python train.py --data_dir <data-path> --init_checkpoint <bert/mt-dnn-model> --train_dataset mnli --test_dataset mnli_matched,mnli_mismatched --task_def experiments\glue\glue_task_def.yml --adv_train --adv_opt 1

HNN

The code to reproduce HNN is under hnn folder, to reproduce the results of HNN, run

> hnn/script/hnn_train_large.sh

Extract embeddings

  1. Extracting embeddings of a pair text example
    >python extractor.py --do_lower_case --finput input_examples\pair-input.txt --foutput input_examples\pair-output.json --bert_model bert-base-uncased --checkpoint mt_dnn_models\mt_dnn_base.pt
    Note that the pair of text is split by a special token |||. You may refer input_examples\pair-output.json as example.

  2. Extracting embeddings of a single sentence example
    >python extractor.py --do_lower_case --finput input_examples\single-input.txt --foutput input_examples\single-output.json --bert_model bert-base-uncased --checkpoint mt_dnn_models\mt_dnn_base.pt

Speed up Training

  1. Gradient Accumulation
    If you have small GPUs, you may need to use the gradient accumulation to make training stable.
    For example, if you use the flag: --grad_accumulation_step 4 during the training, the actual batch size will be batch_size * 4.

  2. FP16 The current version of MT-DNN also supports FP16 training, and please install apex.
    You just need to turn on the flag during the training: --fp16
    Please refer the script: scripts\run_mt_dnn_gc_fp16.sh

Convert Tensorflow BERT model to the MT-DNN format

Here, we go through how to convert a Chinese Tensorflow BERT model into mt-dnn format.

  1. Download BERT model from the Google bert web: https://github.com/google-research/bert

  2. Run the following script for MT-DNN format
    python scripts\convert_tf_to_pt.py --tf_checkpoint_root chinese_L-12_H-768_A-12\ --pytorch_checkpoint_path chinese_L-12_H-768_A-12\bert_base_chinese.pt

TODO

  • Publish pretrained Tensorflow checkpoints.

FAQ

Did you share the pretrained mt-dnn models?

Yes, we released the pretrained shared embedings via MTL which are aligned to BERT base/large models: mt_dnn_base.pt and mt_dnn_large.pt.
To obtain the similar models:

  1. run the >sh scripts\run_mt_dnn.sh, and then pick the best checkpoint based on the average dev preformance of MNLI/RTE.
  2. strip the task-specific layers via scritps\strip_model.py.

Why SciTail/SNLI do not enable SAN?

For SciTail/SNLI tasks, the purpose is to test generalization of the learned embedding and how easy it is adapted to a new domain instead of complicated model structures for a direct comparison with BERT. Thus, we use a linear projection on the all domain adaptation settings.

What is the difference between V1 and V2

The difference is in the QNLI dataset. Please refere to the GLUE official homepage for more details. If you want to formulate QNLI as pair-wise ranking task as our paper, make sure that you use the old QNLI data.
Then run the prepro script with flags: > sh experiments/glue/prepro.sh --old_glue
If you have issues to access the old version of the data, please contact the GLUE team.

Did you fine-tune single task for your GLUE leaderboard submission?

We can use the multi-task refinement model to run the prediction and produce a reasonable result. But to achieve a better result, it requires a fine-tuneing on each task. It is worthing noting the paper in arxiv is a littled out-dated and on the old GLUE dataset. We will update the paper as we mentioned below.

Notes and Acknowledgments

BERT pytorch is from: https://github.com/huggingface/pytorch-pretrained-BERT
BERT: https://github.com/google-research/bert
We also used some code from: https://github.com/kevinduh/san_mrc

Related Projects/Codebase

  1. Pretrained UniLM: https://github.com/microsoft/unilm
  2. Pretrained Response Generation Model: https://github.com/microsoft/DialoGPT
  3. Internal MT-DNN repo: https://github.com/microsoft/mt-dnn

How do I cite MT-DNN?

@inproceedings{liu2019mt-dnn,
    title = "Multi-Task Deep Neural Networks for Natural Language Understanding",
    author = "Liu, Xiaodong and He, Pengcheng and Chen, Weizhu and Gao, Jianfeng",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P19-1441",
    pages = "4487--4496"
}


@article{liu2019mt-dnn-kd,
  title={Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding},
  author={Liu, Xiaodong and He, Pengcheng and Chen, Weizhu and Gao, Jianfeng},
  journal={arXiv preprint arXiv:1904.09482},
  year={2019}
}


@article{he2019hnn,
  title={A Hybrid Neural Network Model for Commonsense Reasoning},
  author={He, Pengcheng and Liu, Xiaodong and Chen, Weizhu and Gao, Jianfeng},
  journal={arXiv preprint arXiv:1907.11983},
  year={2019}
}


@article{liu2019radam,
  title={On the Variance of the Adaptive Learning Rate and Beyond},
  author={Liu, Liyuan and Jiang, Haoming and He, Pengcheng and Chen, Weizhu and Liu, Xiaodong and Gao, Jianfeng and Han, Jiawei},
  journal={arXiv preprint arXiv:1908.03265},
  year={2019}
}


@article{jiang2019smart,
  title={SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization},
  author={Jiang, Haoming and He, Pengcheng and Chen, Weizhu and Liu, Xiaodong and Gao, Jianfeng and Zhao, Tuo},
  journal={arXiv preprint arXiv:1911.03437},
  year={2019}
}


@article{liu2020mtmtdnn,
  title={The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding},
  author={Liu, Xiaodong and Wang, Yu and Ji, Jianshu and Cheng, Hao and Zhu, Xueyun and Awa, Emmanuel and He, Pengcheng and Chen, Weizhu and Poon, Hoifung and Cao, Guihong and Jianfeng Gao},
  journal={arXiv preprint arXiv:2002.07972},
  year={2020}
}


@article{liu2020alum,
  title={Adversarial Training for Large Neural Language Models},
  author={Liu, Xiaodong and Cheng, Hao and He, Pengcheng and Chen, Weizhu and Wang, Yu and Poon, Hoifung and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2004.08994},
  year={2020}
}

@article{cheng2020posterior,
  title={Posterior Differential Regularization with f-divergence for Improving Model Robustness},
  author={Cheng, Hao and Liu, Xiaodong and Pereira, Lis and Yu, Yaoliang and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2010.12638},
  year={2020}
}

Contact Information

For help or issues using MT-DNN, please submit a GitHub issue.

For personal communication related to this package, please contact Xiaodong Liu ([email protected]), Yu Wang ([email protected]), Pengcheng He ([email protected]), Weizhu Chen ([email protected]), Jianshu Ji ([email protected]), Hao Cheng ([email protected]) or Jianfeng Gao ([email protected]).

Owner
Xiaodong
And if you gaze long into an abyss, the abyss also gazes into you --Friedrich Nietzsche
Xiaodong
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022