GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

Overview

GazeScroller

Using Facial Movements to perform Hands-free Gesture on the system

Abstract

As our world is getting digitized on an fast rate, every person is having a device that is making life better. Also, there is a considerate amount of the society that do not have interactions as others to these devices. One such example are the quadriplegic people (people suffering from paralysis) which constitute to 5.4 million people people in the world*. Our aim here is to make them interact with the digital world. In this project, facial movements of the person's face is fed to the system on real-time and a certain list of operations can be performed on the system using these facial actions.Additionally, we will extend this system to mini-games on the internet like the Dino Game. Finally, I have evaluated the system by five people and found that they have positively to the system. These results imply that we can generalise this system to the entire world.

Approach

The project captures live stream of the video via webcam of the system. It then maps the face to 68 landmark points via the library Dlib. The movements of the points corresponding to the eye and nose are monitored continously. The functionalities covered in the project include : • Detect blink of one eye to enable/disable scrolling. • Detect the scroll movement based on the movement of the point on the nose. Using Blink to toggle scroll and head direction to scroll

Background Study

Blinking is an involuntary action of a human being.Blinks can be spontaneous, reflex and voluntary, and eye blink rate depends on various factors including environmental factors, type of activity.

In order to segregate natural blink of the eye with the intentional blink of one eye of the user for functionality 1 as discussed above, I have studied the eye width ratios of by conducting experiments study over 5 users with each subject testing for 10 times. This data analysis is used to understand to difference in the eye width ratio between both the eyes to when a user blinks one of the eye. Secondly, the intentional blink of the eye is put on a threshold for 3 frames to detect blink. These procedures helped detect the intentional one eye blink from the natural blink of the eyes. The information from the Fig 1 gives us the details of the eye ratio and the delta (difference between the eye ratios). We take the mean and use them as a reference in our code as threshold.

Technical Tools :

• Dlib - a library used to detect face per frame via webcam • Python - language to write the code • landmarksPoints.dat file - this file is used to superimpose landmarks onto the face detected. • pynput - library to invoke keyboard and mouse keys.

System Setup :

By using the tools of mentioned above, we get the face of the user per frame superimposed by landmark points. Calculations for each frame include :

rightEyeWidthRatio = height of the right eye/ width of the right eye leftEyeWidthRatio = height of the left eye/ width of the left eye delta = abs(leftEyeWidthRatio - rightEyeWidthRatio) Whenever a user blinks one eye, following cases are checked • Check 1 : if delta > threshold of delta taken from fig.1 • Check 2 : if leftEyeWidthRatio < threshold value of blink and frame count is 3. • If Check 1 and Check 2 true , trigger Blink and enable scrolling. UX Aspects : Trigger notifications in the system when scrolling is toggled.

Discussion & Future Scope:

In the present work I have not made much effort into perfectly the model and in CV. I have worked towards the thresholds and correlating to the use case I mentioned in the abstract. If substantial work is detecting the exact eye wink using ML models, the system would be much better. The false blinks being recorded is because we lack a model here. In the future scope , we can use this feature to build interactive games to the quadriplegic people to improve their psychological status too.

Conclusion :

All the subjects who have tested responded positively to the system and felt good about it. Therefore, we can say that our system is performing good to scroll pages using the nose and to capture the blink of the eye as a toggle gesture.

Hence, such a model will be beneficial to quadriplegic people and help them to interact with the digital world.Since the false blinks are low, the system is good to be used. It can be further perfected with ML models to give better accuracy to be used by the quadriplegic people.

Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022