Simple ONNX operation generator. Simple Operation Generator for ONNX.

Overview

sog4onnx

Simple ONNX operation generator. Simple Operation Generator for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Variable, Constant, Operation and Attribute can be generated externally.
  • Allow Opset to be specified externally.
  • No check for consistency of Operations within the tool, as new OPs are added frequently and the definitions of existing OPs change with each new version of ONNX's Opset.
  • Only one OP can be defined at a time, and the goal is to generate free ONNX graphs using a combination of snc4onnx, sne4onnx, snd4onnx and scs4onnx.
  • List of parameters that can be specified: https://github.com/onnx/onnx/blob/main/docs/Operators.md

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sog4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sog4onnx:latest

### docker build
$ docker build -t pinto0309/sog4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sog4onnx:latest
$ cd /workdir

2. CLI Usage

$ sog4onnx -h

usage: sog4onnx [-h]
  --op_type OP_TYPE
  --opset OPSET
  --op_name OP_NAME
  [--input_variables NAME TYPE VALUE]
  [--output_variables NAME TYPE VALUE]
  [--attributes NAME DTYPE VALUE]
  [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
  [--non_verbose]

optional arguments:
  -h, --help
        show this help message and exit

  --op_type OP_TYPE
        ONNX OP type.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

  --opset OPSET
        ONNX opset number.

  --op_name OP_NAME
        OP name.

  --input_variables NAME DTYPE VALUE
        input_variables can be specified multiple times.
        --input_variables variable_name numpy.dtype shape
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --input_variables i1 float32 [1,3,5,5] \
        --input_variables i2 int32 [1] \
        --input_variables i3 float64 [1,3,224,224]

  --output_variables NAME DTYPE VALUE
        output_variables can be specified multiple times.
        --output_variables variable_name numpy.dtype shape
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --output_variables o1 float32 [1,3,5,5] \
        --output_variables o2 int32 [1] \
        --output_variables o3 float64 [1,3,224,224]

  --attributes NAME DTYPE VALUE
        attributes can be specified multiple times.
        dtype is one of "float32" or "float64" or "int32" or "int64" or "str".
        --attributes name dtype value
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --attributes alpha float32 1.0 \
        --attributes beta float32 1.0 \
        --attributes transA int32 0 \
        --attributes transB int32 0

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.
        If not specified, a file with the OP type name is generated.

        e.g. op_type="Gemm" -> Gemm.onnx

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from sog4onnx import generate
>>> help(generate)
Help on function generate in module sog4onnx.onnx_operation_generator:

generate(
  op_type: str,
  opset: int,
  op_name: str,
  input_variables: dict,
  output_variables: dict,
  attributes: Union[dict, NoneType] = None,
  output_onnx_file_path: Union[str, NoneType] = '',
  non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    op_type: str
        ONNX op type.
        See below for the types of OPs that can be specified.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g. "Add", "Div", "Gemm", ...

    opset: int
        ONNX opset number.

        e.g. 11

    op_name: str
        OP name.

    input_variables: Optional[dict]
        Specify input variables for the OP to be generated.
        See below for the variables that can be specified.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md
        {"input_var_name1": [numpy.dtype, shape], "input_var_name2": [dtype, shape], ...}

        e.g.
        input_variables = {
          "name1": [np.float32, [1,224,224,3]],
          "name2": [np.bool_, [0]],
          ...
        }

    output_variables: Optional[dict]
        Specify output variables for the OP to be generated.
        See below for the variables that can be specified.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md
        {"output_var_name1": [numpy.dtype, shape], "output_var_name2": [dtype, shape], ...}

        e.g.
        output_variables = {
          "name1": [np.float32, [1,224,224,3]],
          "name2": [np.bool_, [0]],
          ...
        }

    attributes: Optional[dict]
        Specify output attributes for the OP to be generated.
        See below for the attributes that can be specified.
        When specifying Tensor format values, specify an array converted to np.ndarray.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md
        {"attr_name1": value1, "attr_name2": value2, "attr_name3": value3, ...}

        e.g.
        attributes = {
          "alpha": 1.0,
          "beta": 1.0,
          "transA": 0,
          "transB": 0
        }
        Default: None

    output_onnx_file_path: Optional[str]
        Output of onnx file path.
        If not specified, no .onnx file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    single_op_graph: onnx.ModelProto
        Single op onnx ModelProto

4. CLI Execution

$ sog4onnx \
--op_type Gemm \
--opset 1 \
--op_name gemm_custom1 \
--input_variables i1 float32 [1,2,3] \
--input_variables i2 float32 [1,1] \
--input_variables i3 int32 [0] \
--output_variables o1 float32 [1,2,3] \
--attributes alpha float32 1.0 \
--attributes beta float32 1.0 \
--attributes transA int32 0 \
--attributes transB int32 0

5. In-script Execution

import numpy as np
from sog4onnx import generate

single_op_graph = generate(
    op_type = 'Gemm',
    opset = 1,
    op_name = "gemm_custom1",
    input_variables = {
      "i1": [np.float32, [1,2,3]],
      "i2": [np.float32, [1,1]],
      "i3": [np.int32, [0]],
    },
    output_variables = {
      "o1": [np.float32, [1,2,3]],
    },
    attributes = {
      "alpha": 1.0,
      "beta": 1.0,
      "broadcast": 0,
      "transA": 0,
      "transB": 0,
    },
    non_verbose = True,
)

6. Sample

6-1. opset=1, Gemm

$ sog4onnx \
--op_type Gemm \
--opset 1 \
--op_name gemm_custom1 \
--input_variables i1 float32 [1,2,3] \
--input_variables i2 float32 [1,1] \
--input_variables i3 int32 [0] \
--output_variables o1 float32 [1,2,3] \
--attributes alpha float32 1.0 \
--attributes beta float32 1.0 \
--attributes transA int32 0 \
--attributes transB int32 0
--non_verbose

image image

6-2. opset=11, Add

$ sog4onnx \
--op_type Add \
--opset 11 \
--op_name add_custom1 \
--input_variables i1 float32 [1,2,3] \
--input_variables i2 float32 [1,2,3] \
--output_variables o1 float32 [1,2,3] \
--non_verbose

image image

6-3. opset=11, NonMaxSuppression

$ sog4onnx \
--op_type NonMaxSuppression \
--opset 11 \
--op_name nms_custom1 \
--input_variables boxes float32 [1,6,4] \
--input_variables scores float32 [1,1,6] \
--input_variables max_output_boxes_per_class int64 [1] \
--input_variables iou_threshold float32 [1] \
--input_variables score_threshold float32 [1] \
--output_variables selected_indices int64 [3,3] \
--attributes center_point_box int64 1

image image

6-4. opset=11, Constant

$ sog4onnx \
--op_type Constant \
--opset 11 \
--op_name const_custom1 \
--output_variables boxes float32 [1,6,4] \
--attributes value float32 \
[[\
[0.5,0.5,1.0,1.0],\
[0.5,0.6,1.0,1.0],\
[0.5,0.4,1.0,1.0],\
[0.5,10.5,1.0,1.0],\
[0.5,10.6,1.0,1.0],\
[0.5,100.5,1.0,1.0]\
]]

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/sne4onnx
  5. https://github.com/PINTO0309/snd4onnx
  6. https://github.com/PINTO0309/snc4onnx
  7. https://github.com/PINTO0309/scs4onnx
  8. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Simple node deletion tool for onnx.
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

PyTorch ,ONNX and TensorRT implementation of YOLOv4
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

YOLOv5 in PyTorch > ONNX > CoreML > TFLite
YOLOv5 in PyTorch ONNX CoreML TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. All code and models are under active development, and are subject to modification or deletion without notice.

Comments
  • Small fixes to README

    Small fixes to README

    Thank you for the tool. There are small fixes needed in the README: the attributes of one example missing the type, and the numpy import in another one.

    Otherwise, it works perfectly.

    opened by ibaiGorordo 1
Releases(1.0.15)
  • 1.0.15(Nov 20, 2022)

    • Fixed a bug where Constant and ConstantOfShape opsets were not set

    Full Changelog: https://github.com/PINTO0309/sog4onnx/compare/1.0.14...1.0.15

    Source code(tar.gz)
    Source code(zip)
  • 1.0.14(Sep 8, 2022)

    • Add short form parameter
      $ sog4onnx -h
      
      usage: sog4onnx [-h]
        --ot OP_TYPE
        --os OPSET
        --on OP_NAME
        [-iv NAME TYPE VALUE]
        [-ov NAME TYPE VALUE]
        [-a NAME DTYPE VALUE]
        [-of OUTPUT_ONNX_FILE_PATH]
        [-n]
      
      optional arguments:
        -h, --help
          show this help message and exit
      
        -ot OP_TYPE, --op_type OP_TYPE
          ONNX OP type.
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
        -os OPSET, --opset OPSET
          ONNX opset number.
      
        -on OP_NAME, --op_name OP_NAME
          OP name.
      
        -iv INPUT_VARIABLES INPUT_VARIABLES INPUT_VARIABLES, --input_variables INPUT_VARIABLES INPUT_VARIABLES INPUT_VARIABLES
          input_variables can be specified multiple times.
          --input_variables variable_name numpy.dtype shape
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --input_variables i1 float32 [1,3,5,5] \
          --input_variables i2 int32 [1] \
          --input_variables i3 float64 [1,3,224,224]
      
        -ov OUTPUT_VARIABLES OUTPUT_VARIABLES OUTPUT_VARIABLES, --output_variables OUTPUT_VARIABLES OUTPUT_VARIABLES OUTPUT_VARIABLES
          output_variables can be specified multiple times.
          --output_variables variable_name numpy.dtype shape
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --output_variables o1 float32 [1,3,5,5] \
          --output_variables o2 int32 [1] \
          --output_variables o3 float64 [1,3,224,224]
      
        -a ATTRIBUTES ATTRIBUTES ATTRIBUTES, --attributes ATTRIBUTES ATTRIBUTES ATTRIBUTES
          attributes can be specified multiple times.
          dtype is one of "float32" or "float64" or "int32" or "int64" or "str".
          --attributes name dtype value
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --attributes alpha float32 1.0 \
          --attributes beta float32 1.0 \
          --attributes transA int32 0 \
          --attributes transB int32 0
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
          Output onnx file path.
          If not specified, a file with the OP type name is generated.
      
          e.g. op_type="Gemm" -> Gemm.onnx
      
        -n, --non_verbose
          Do not show all information logs. Only error logs are displayed.
      
    Source code(tar.gz)
    Source code(zip)
  • 1.0.13(Jun 10, 2022)

  • 1.0.12(Jun 7, 2022)

  • 1.0.11(May 25, 2022)

  • 1.0.10(May 15, 2022)

  • 1.0.9(Apr 26, 2022)

    • Added op_name as an input parameter, allowing OPs to be named.
      • CLI
        sog4onnx [-h]
          --op_type OP_TYPE
          --opset OPSET
          --op_name OP_NAME
          [--input_variables NAME TYPE VALUE]
          [--output_variables NAME TYPE VALUE]
          [--attributes NAME DTYPE VALUE]
          [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
          [--non_verbose]
        
      • In-script
        generate(
          op_type: str,
          opset: int,
          op_name: str,
          input_variables: dict,
          output_variables: dict,
          attributes: Union[dict, NoneType] = None,
          output_onnx_file_path: Union[str, NoneType] = '',
          non_verbose: Union[bool, NoneType] = False
        ) -> onnx.onnx_ml_pb2.ModelProto
        
    Source code(tar.gz)
    Source code(zip)
  • 1.0.8(Apr 15, 2022)

  • 1.0.7(Apr 14, 2022)

  • 1.0.6(Apr 14, 2022)

  • 1.0.5(Apr 13, 2022)

  • 1.0.4(Apr 13, 2022)

  • 1.0.3(Apr 12, 2022)

  • 1.0.2(Apr 12, 2022)

  • 1.0.1(Apr 12, 2022)

  • 1.0.0(Apr 12, 2022)

  • 0.0.2(Apr 12, 2022)

  • 0.0.1(Apr 12, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023