[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Overview

Panoptic Segmentation Forecasting

Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021

[Link to paper]

Animated gif showing visual comparison of our model's results compared against the hybrid baseline

We propose to study the novel task of ‘panoptic segmentation forecasting’: given a set of observed frames, the goal is to forecast the panoptic segmentation for a set of unobserved frames. We also propose a first approach to forecasting future panoptic segmentations. In contrast to typical semantic forecasting, we model the motion of individual object instances and the background separately. This makes instance information persistent during forecasting, and allows us to understand the motion of each moving object.

Image presenting the model diagram

⚙️ Setup

Dependencies

Install the code using the following command: pip install -e ./

Data

  • To run this code, the gtFine_trainvaltest dataset will need to be downloaded from the Cityscapes website into the data/ directory.
  • The remainder of the required data can be downloaded using the script download_data.sh. By default, everything is downloaded into the data/ directory.
  • Training the background model requires generating a version of the semantic segmentation annotations where foreground regions have been removed. This can be done by running the script scripts/preprocessing/remove_fg_from_gt.sh.
  • Training the foreground model requires additionally downloading a pretrained MaskRCNN model. This can be found at this link. This should be saved as pretrained_models/fg/mask_rcnn_pretrain.pkl.
  • Training the background model requires additionally downloading a pretrained HarDNet model. This can be found at this link. This should be saved as pretrained_models/bg/hardnet70_cityscapes_model.pkl.

Running our code

The scripts directory contains scripts which can be used to train and evaluate the foreground, background, and egomotion models. Specifically:

  • scripts/odom/run_odom_train.sh trains the egomotion prediction model.
  • scripts/odom/export_odom.sh exports the odometry predictions, which can then be used during evaluation by other models
  • scripts/bg/run_bg_train.sh trains the background prediction model.
  • scripts/bg/run_export_bg_val.sh exports predictions make by the background using input reprojected point clouds which come from using predicted egomotion.
  • scripts/fg/run_fg_train.sh trains the foreground prediction model.
  • scripts/fg/run_fg_eval_panoptic.sh produces final panoptic semgnetation predictions based on the trained foreground model and exported background predictions. This also uses predicted egomotion as input.

We provide our pretrained foreground, background, and egomotion prediction models. The data downloading script additionally downloads these models into the directory pretrained_models/

✏️ 📄 Citation

If you found our work relevant to yours, please consider citing our paper:

@inproceedings{graber-2021-panopticforecasting,
 title   = {Panoptic Segmentation Forecasting},
 author  = {Colin Graber and
            Grace Tsai and
            Michael Firman and
            Gabriel Brostow and
            Alexander Schwing},
 booktitle = {Computer Vision and Pattern Recognition ({CVPR})},
 year = {2021}
}

👩‍⚖️ License

Copyright © Niantic, Inc. 2021. Patent Pending. All rights reserved. Please see the license file for terms.

Owner
Niantic Labs
Building technologies and ideas that move us
Niantic Labs
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022