Implementation of momentum^2 teacher

Overview

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning

Requirements

  1. All experiments are done with python3.6, torch==1.5.0; torchvision==0.6.0

Usage

Data Preparation

Prepare the ImageNet data in ${root_of_your_clone}/data/imagenet_train, ${root_of_your_clone}/data/imagenet_val. Since we have an internal platform(storage) to read imagenet, I have not tried the local mode. You may need to do some modification in momentum_teacher/data/dataset.py to support the local mode.

Training

Before training, ensure the path (namely ${root_of_clone}) is added in your PYTHONPATH, e.g.

export PYTHONPATH=$PYTHONPATH:${root_of_clone}

To do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine, run:

  1. using -d to specify gpu_id for training, e.g., -d 0-7
  2. using -b to specify batch_size, e.g., -b 256
  3. using --experiment-name to specify the output folder, and the training log & models will be dumped to './outputs/${experiment-name}'
  4. using -f to specify the description file of ur experiment.

e.g.,

python3 momentum_teacher/tools/train.py -b 256 -d 0-7 --experiment-name your_exp -f momentum_teacher/exps/arxiv/exp_8_v100/momentum2_teacher_100e_exp.py

Linear Evaluation:

With a pre-trained model, to train a supervised linear classifier on frozen features/weights in an 8 gpus machine, run:

  1. using -d to specify gpu_id for training, e.g., -d 0-7
  2. using -b to specify batch_size, e.g., -b 256
  3. using --experiment-name to specify the folder for saving pre-training models.
python3 momentum_teacher/tools/eval.py -b 256 --experiment-name your_exp -f momentum_teacher/exps/arxiv/linear_eval_exp_byol.py

Results

Results of Pretraining on a Single Machine

After pretraining on 8 NVIDIA V100 GPUS and 1024 batch-sizes, the results of linear-evaluation are:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~1.8 day 70.7 -
path 200 ~3.6 day 72.7 -
path 300 ~5.5 day 73.8 -

After pretraining on 8 NVIDIA 2080 GPUS and 256 batch-sizes, the results of linear-evaluation are:

pre-train code pre-train
epochs
pre-train time accuracy wights
path 100 ~2.5 day 70.4 -
path 200 ~5 day 72.3 -
path 300 ~7.5 day 72.9 -

Results of Pretraining on Multiple Machines

E.g., To do unsupervised pre-training with 4096 batch-sizes and 32 V100 GPUs. run:

Suggesting that each machine has 8 V100 GPUs and there are 4 machines

# machine 1:
export MACHINE=0; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 2:
export MACHINE=1; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 3:
export MACHINE=2; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 4:
export MACHINE=3; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx

results of linear-eval:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~11hour 70.3 -
path 200 ~22hour 72.5 -
path 300 ~33hour 73.7 -

To do unsupervised pre-training with 4096 batch-sizes and 128 2080 GPUs, pls follow the above guides. Results of linear-eval:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~5hour 69.0 -
path 200 ~10hour 71.5 -
path 300 ~15hour 72.3 -

Disclaimer

This is an implementation for Momentum^2 Teacher, it is worth noting that:

  • The original implementation is based on our internal Platform.
  • This released version has slightly better performances compared with the tech report's.
Owner
jemmy li
jemmy li
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022