Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Related tags

Deep LearningISVN
Overview

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB)

Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dezhong Peng, Deep Semisupervised Multiview Learning With Increasing Views[J]. IEEE Transactions on Cybernetics, Online. (PyTorch Code)

Abstract

In this article, we study two challenging problems in semisupervised cross-view learning. On the one hand, most existing methods assume that the samples in all views have a pairwise relationship, that is, it is necessary to capture or establish the correspondence of different views at the sample level. Such an assumption is easily isolated even in the semisupervised setting wherein only a few samples have labels that could be used to establish the correspondence. On the other hand, almost all existing multiview methods, including semisupervised ones, usually train a model using a fixed dataset, which cannot handle the data of increasing views. In practice, the view number will increase when new sensors are deployed. To address the above two challenges, we propose a novel method that employs multiple independent semisupervised view-specific networks (ISVNs) to learn representation for multiple views in a view-decoupling fashion. The advantages of our method are two-fold. Thanks to our specifically designed autoencoder and pseudolabel learning paradigm, our method shows an effective way to utilize both the labeled and unlabeled data while relaxing the data assumption of the pairwise relationship, that is, correspondence. Furthermore, with our view decoupling strategy, the proposed ISVNs could be separately trained, thus efficiently handling the data of increasing views without retraining the entire model. To the best of our knowledge, our ISVN could be one of the first attempts to make handling increasing views in the semisupervised setting possible, as well as an effective solution to the noncorresponding problem. To verify the effectiveness and efficiency of our method, we conduct comprehensive experiments by comparing 13 state-of-the-art approaches on four multiview datasets in terms of retrieval and classification.

Framework

Figure 1. Difference between (a) existing joint multiview learning and (b) our independent multiview learning. In brief, the traditional methods use all views to learn the common space. They are difficult to handle increasing views since their models are optimized depending on all views. Thus, they should retrain the whole model to handle new views, which is inefficient with abandoning the trained model. In contrast, our method independently trains the k view-specific models for the k new views, thus efficiently handling increasing views.


Figure 2. Pipeline of our ISVN for the 𝓲th view. All views could be separately projected into the common space without any interview constraints, and could easily and efficiently handle new views.

Usage

To train a model for image modelity wtih 64 bits on $datasets, just run main_DCHN.py as follows:

python train_ISVN.py --datasets $datasets --epochs $epochs --batch_size $batch_size --view_id $view --output_shape $output_shape --beta $beta --alpha $alpha --threshold $threshold --K $K --gpu_id $gpu_id

where $datasets, $epochs, $batch_size, $view, $output_shape, $beta, $alpha, $threshold, $K, and $gpu_id are the name of dataset, epoch , batch size, view number, objective dimensionality, β, αγ, the number of labeled data, and GPU ID, respectively.

To evaluate the trained models, you could run train_ISVN.py as follows:

python train_ISVN.py --mode eval --datasets $datasets --view -1 --output_shape $output_shape --beta $beta --alpha $alpha --K $K --gpu_id $gpu_id --num_workers 0

Comparison with the State-of-the-Art

Table 1. Performance comparison in terms of mAP scores on the XMediaNet dataset. The highest score is shown in boldface.


Table 2. Performance comparison in terms of mAP scores on the NUS-WIDE dataset. The highest score is shown in boldface.


Table 3. Performance comparison in terms of mAP scores on the INRIA-Websearch dataset. The highest score is shown in boldface.


Table 4. Performance comparison in terms of cross-view top-1 classification on the MNIST-SVHN dataset. The highest score is shown in boldface.


Table 5. Ablation study on different datasets. X denotes training ISVN without X, and X could be autoencoder (AE) and pseudo-label (PL). This table shows the experimental results of cross-view retrieval on XMediaNet and NUS-WIDE, and of cross-view classification on MNIST-SVHN. The highest score is shown in boldface.

Citation

If you find ISVN useful in your research, please consider citing:

@inproceedings{hu2021ISVN,
  author={Hu, Peng and Peng, Xi and Zhu, Hongyuan and Zhen, Liangli and Lin, Jie and Yan, Huaibai and Peng, Dezhong},
  journal={IEEE Transactions on Cybernetics}, 
  title={Deep Semisupervised Multiview Learning With Increasing Views}, 
  year={2021},
  volume={},
  number={},
  pages={1-12},
  doi={10.1109/TCYB.2021.3093626}}
}
Owner
https://penghu-cs.github.io/
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023