Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Overview

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

This repository hosts the code related to the paper:

Marco Rosano, Antonino Furnari, Luigi Gulino, Corrado Santoro and Giovanni Maria Farinella, "Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation". Submitted to "Robotics and Autonomous Systems" (RAS), 2022.

For more details please see the project web page at https://iplab.dmi.unict.it/EmbodiedVN.

Overview

This code is built on top of the Habitat-api/Habitat-lab project. Please see the Habitat project page for more details.

This repository provides the following components:

  1. The implementation of the proposed tool, integrated with Habitat, to train visual navigation models on synthetic observations and test them on realistic episodes containing real-world images. This allows the estimation of real-world performance, avoiding the physical deployment of the robotic agent;

  2. The official PyTorch implementation of the proposed visual navigation models, which follow different strategies to combine a range of visual mid-level representations

  3. the synthetic 3D model of the proposed environment, acquired using the Matterport 3D scanner and used to perform the navigation episodes at train and test time;

  4. the photorealistic 3D model that contains real-world images of the proposed environment, labeled with their pose (X, Z, Angle). The sparse 3D reconstruction was performed using the COLMAP Structure from Motion tool, to then be aligned with the Matterport virtual 3D map.

  5. An integration with CycleGAN to train and evaluate navigation models with Habitat on sim2real adapted images.

  6. The checkpoints of the best performing navigation models.

Installation

Requirements

  • Python >= 3.7, use version 3.7 to avoid possible issues.
  • Other requirements will be installed via pip in the following steps.

Steps

  1. (Optional) Create an Anaconda environment and install all on it ( conda create -n fusion-habitat python=3.7; conda activate fusion-habitat )

  2. Install the Habitat simulator following the official repo instructions .The development and testing was done on commit bfbe9fc30a4e0751082824257d7200ad543e4c0e, installing the simulator "from source", launching the ./build.sh --headless --with-cuda command (guide). Please consider to follow these suggestions if you encounter issues while installing the simulator.

  3. Install the customized Habitat-lab (this repo):

    git clone https://github.com/rosanom/mid-level-fusion-nav.git
    cd mid-level-fusion-nav/
    pip install -r requirements.txt
    python setup.py develop --all # install habitat and habitat_baselines
    
  4. Download our dataset (journal version) from here, and extract it to the repository folder (mid-level-fusion-nav/). Inside the data folder you should see this structure:

    datasets/pointnav/orangedev/v1/...
    real_images/orangedev/...
    scene_datasets/orangedev/...
    orangedev_checkpoints/...
    
  5. (Optional, to check if the software works properly) Download the test scenes data and extract the zip file to the repository folder (mid-level-fusion-nav/). To verify that the tool was successfully installed, run python examples/benchmark.py or python examples/example.py.

Data Structure

All data can be found inside the mid-level-fusion-nav/data/ folder:

  • the datasets/pointnav/orangedev/v1/... folder contains the generated train and validation navigation episodes files;
  • the real_images/orangedev/... folder contains the real world images of the proposed environment and the csv file with their pose information (obtained with COLMAP);
  • the scene_datasets/orangedev/... folder contains the 3D mesh of the proposed environment.
  • orangedev_checkpoints/ is the folder where the checkpoints are saved during training. Place the checkpoint file here if you want to restore the training process or evaluate the model. The system will load the most recent checkpoint file.

Config Files

There are two configuration files:

habitat_domain_adaptation/configs/tasks/pointnav_orangedev.yaml

and

habitat_domain_adaptation/habitat_baselines/config/pointnav/ddppo_pointnav_orangedev.yaml.

In the first file you can change the robot's properties, the sensors used by the agent and the dataset used in the experiment. You don't have to modify it.

In the second file you can decide:

  1. if evaluate the navigation models using RGB or mid-level representations;
  2. the set of mid-level representations to use;
  3. the fusion architecture to use;
  4. if train or evaluate the models using real images, or using the CycleGAN sim2real adapted observations.
...
EVAL_W_REAL_IMAGES: True
EVAL_CKPT_PATH_DIR: "data/orangedev_checkpoints/"

SIM_2_REAL: False #use cycleGAN for sim2real image adaptation?

USE_MIDLEVEL_REPRESENTATION: True
MIDLEVEL_PARAMS:
ENCODER: "simple" # "simple", SE_attention, "mid_fusion", ...
FEATURE_TYPE: ["normal"] #["normal", "keypoints3d","curvature", "depth_zbuffer"]
...

CycleGAN Integration (baseline)

In order to use CycleGAN on Habitat for the sim2real domain adaptation during train or evaluation, follow the steps suggested in the repository of our previous resease.

Train and Evaluation

To train the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev.sh

To evaluate the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev_eval.sh

For more information about DD-PPO RL algorithm, please check out the habitat-lab dd-ppo repo page.

License

The code in this repository, the 3D models and the images of the proposed environment are MIT licensed. See the LICENSE file for details.

The trained models and the task datasets are considered data derived from the correspondent scene datasets.

Acknowledgements

This research is supported by OrangeDev s.r.l, by Next Vision s.r.l, the project MEGABIT - PIAno di inCEntivi per la RIcerca di Ateneo 2020/2022 (PIACERI) – linea di intervento 2, DMI - University of Catania, and the grant MIUR AIM - Attrazione e Mobilità Internazionale Linea 1 - AIM1893589 - CUP E64118002540007.

Owner
First Person Vision @ Image Processing Laboratory - University of Catania
First Person Vision @ Image Processing Laboratory - University of Catania
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
LBK 26 Dec 28, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023