HistoKT: Cross Knowledge Transfer in Computational Pathology

Related tags

Deep LearningHistoKT
Overview

HistoKT: Cross Knowledge Transfer in Computational Pathology

Exciting News! HistoKT has been accepted to ICASSP 2022.

HistoKT: Cross Knowledge Transfer in Computational Pathology,
Ryan Zhang, Jiadai Zhu, Stephen Yang, Mahdi S. Hosseini, Angelo Genovese, Lina Chen, Corwyn Rowsell, Savvas Damaskinos, Sonal Varma, Konstantinos N. Plataniotis
Accepted in 2022 IEEE International Conference on Acourstics, Speech, and Signal Processing (ICASSP2022)

Overview

In computational pathology, the lack of well-annotated datasets obstructs the application of deep learning techniques. Since pathologist time is expensive, dataset curation is intrinsically difficult. Thus, many CPath workflows involve transferring learned knowledge between various image domains through transfer learning. Currently, most transfer learning research follows a model-centric approach, tuning network parameters to improve transfer results over few datasets. In this paper, we take a data-centric approach to the transfer learning problem and examine the existence of generalizable knowledge between histopathological datasets. First, we create a standardization workflow for aggregating existing histopathological data. We then measure inter-domain knowledge by training ResNet18 models across multiple histopathological datasets, and cross-transferring between them to determine the quantity and quality of innate shared knowledge. Additionally, we use weight distillation to share knowledge between models without additional training. We find that hard to learn, multi-class datasets benefit most from pretraining, and a two stage learning framework incorporating a large source domain such as ImageNet allows for better utilization of smaller datasets. Furthermore, we find that weight distillation enables models trained on purely histopathological features to outperform models using external natural image data.

Results

We report our transfer learning using ResNet18 results accross various datasets, with two initialization methods (random and ImageNet initialization). Each item in the matrix represents the Top-1 test accuracy of a ResNet18 model trained on the source dataset and deep-tuned on the target dataset. Items are highlighted in a colour gradient from deep red to deep green, where green represents significant accuracy improvement after tuning, and red represents accuracy decline after tuning.

No Pretraining

ImageNet Initialization

Table of Contents

Getting Started

Dependencies

  • Requirements are specified in requirements.txt
argon2-cffi==20.1.0
async-generator==1.10
attrs==21.2.0
backcall==0.2.0
bleach==3.3.0
cffi==1.14.5
colorama==0.4.4
cycler==0.10.0
decorator==4.4.2
defusedxml==0.7.1
entrypoints==0.3
et-xmlfile==1.1.0
h5py==3.2.1
imageio==2.9.0
ipykernel==5.5.4
ipython==7.23.1
ipython-genutils==0.2.0
ipywidgets==7.6.3
jedi==0.18.0
Jinja2==3.0.0
joblib==1.0.1
jsonschema==3.2.0
jupyter==1.0.0
jupyter-client==6.1.12
jupyter-console==6.4.0
jupyter-core==4.7.1
jupyterlab-pygments==0.1.2
jupyterlab-widgets==1.0.0
kiwisolver==1.3.1
MarkupSafe==2.0.0
matplotlib==3.4.2
matplotlib-inline==0.1.2
mistune==0.8.4
nbclient==0.5.3
nbconvert==6.0.7
nbformat==5.1.3
nest-asyncio==1.5.1
networkx==2.5.1
notebook==6.3.0
numpy==1.20.3
openpyxl==3.0.7
packaging==20.9
pandas==1.2.4
pandocfilters==1.4.3
parso==0.8.2
pickleshare==0.7.5
Pillow==8.2.0
prometheus-client==0.10.1
prompt-toolkit==3.0.18
pyaml==20.4.0
pycparser==2.20
Pygments==2.9.0
pyparsing==2.4.7
pyrsistent==0.17.3
python-dateutil==2.8.1
pytz==2021.1
PyWavelets==1.1.1
pywin32==300
pywinpty==0.5.7
PyYAML==5.4.1
pyzmq==22.0.3
qtconsole==5.1.0
QtPy==1.9.0
scikit-image==0.18.1
scikit-learn==0.24.2
scipy==1.6.3
Send2Trash==1.5.0
six==1.16.0
sklearn==0.0
terminado==0.9.5
testpath==0.4.4
threadpoolctl==2.1.0
tifffile==2021.4.8
torch==1.8.1+cu102
torchaudio==0.8.1
torchvision==0.9.1+cu102
tornado==6.1
traitlets==5.0.5
typing-extensions==3.10.0.0
wcwidth==0.2.5
webencodings==0.5.1
widgetsnbextension==3.5.1

Running the Code

This codebase was created in collaboration with the RMSGD repository. As such, much of the training pipeline is shared.

Downloading datasets

All available datasets can be found on their respective websites. Some datasets, such as ADP, are available by request.

A list of all datasets used in this paper can be found below:

Preprocessing and Training

To prepare datasets for training, please use the functions found in dataset_processing\standardize_datasets.py after downloading all the datasets and placing them all in one folder.

cd HistoKT/dataset_processing
python standardize_datasets.py

A standardized version of each dataset will be created in the dataset folder.

To run the code for training, use the src/adas/train.py file:

cd HistoKT
python src/adas/train.py --config CONFIG --data DATA_FOLDER

Options for Training

--config CONFIG       Set configuration file path: Default = 'configAdas.yaml'
--data DATA           Set data directory path: Default = '.adas-data'
--output OUTPUT       Set output directory path: Default = '.adas-output'
--checkpoint CHECKPOINT
                    Set checkpoint directory path: Default = '.adas-checkpoint'
--resume RESUME       Set checkpoint resume path: Default = None
--pretrained_model PRETRAINED_MODEL
                    Set checkpoint pretrained model path: Default = None
--freeze_encoder FREEZE_ENCODER
                    Set if to freeze encoder for post training: Default = True
--root ROOT           Set root path of project that parents all others: Default = '.'
--save-freq SAVE_FREQ
                    Checkpoint epoch save frequency: Default = 25
--cpu                 Flag: CPU bound training: Default = False
--gpu GPU             GPU id to use: Default = 0
--multiprocessing-distributed
                    Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either   
                    single node or multi node data parallel training: Default = False
--dist-url DIST_URL   url used to set up distributed training:Default = 'tcp://127.0.0.1:23456'
--dist-backend DIST_BACKEND
                    distributed backend: Default = 'nccl'
--world-size WORLD_SIZE
                    Number of nodes for distributed training: Default = -1
--rank RANK           Node rank for distributed training: Default = -1
--color_aug COLOR_AUG
                    override config color augmentation, can also choose "no_aug"
--norm_vals NORM_VALS
                    override normalization values, use dataset string. e.g. "BACH_transformed"

Training Output

All training output will be saved to the OUTPUT_PATH location. After a full experiment, results will be recorded in the following format:

  • OUTPUT
    • Timestamped xlsx sheet with the record of train and validation (notated as test) acc, loss, and rank metrics for each layer in the network (refer to AdaS)
  • CHECKPOINT
    • checkpoint dictionaries with a snapshot of the model's parameters at a given epoch.

Code Organization

Configs

We provide sample configuration files for ResNet18 over all used datasets in configs\NewPretrainingConfigs

These configs were used for training the model on each dataset from random initialization.

All available options can be found in the config files.

Visualization

We provide sample code to plot training curves in Plots

We provide sample code on using the statistical method t-SNE to visualize the high-dimensional features in T-sne.

We provide sample code on using the visual explanation algorithm Grad-CAM heat-maps in gradCAM.

Version History

  • 0.1
    • Initial Release
Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022