My implementation of DeepMind's Perceiver

Overview

DeepMind Perceiver (in PyTorch)

Disclaimer: This is not official and I'm not affiliated with DeepMind.

My implementation of the Perceiver: General Perception with Iterative Attention. You can read more about the model on DeepMind's website.

I trained an MNIST model which you can find in models/mnist.pkl or by using perceiver.load_mnist_model(). It gets 96.02% on the test-data.

Getting started

To run this you need PyTorch installed:

pip3 install torch

From perceiver you can import Perceiver or PerceiverLogits.

Then you can use it as such (or look in examples.ipynb):

from perceiver import Perceiver

model = Perceiver(
    input_channels, # <- How many channels in the input? E.g. 3 for RGB.
    input_shape, # <- How big is the input in the different dimensions? E.g. (28, 28) for MNIST
    fourier_bands=4, # <- How many bands should the positional encoding have?
    latents=64, # <- How many latent vectors?
    d_model=32, # <- Model dimensionality. Every pixel/token/latent vector will have this size.
    heads=8, # <- How many heads in self-attention? Cross-attention always has 1 head.
    latent_blocks=6, # <- How much latent self-attention for each cross attention with the input?
    dropout=0.1, # <- Dropout
    layers=8, # <- This will become two unique layer-blocks: layer 1 and layer 2-8 (using weight sharing).
)

The above model outputs the latents after the final layer. If you want logits instead, use the following model:

from perceiver import PerceiverLogits

model = PerceiverLogits(
    input_channels, # <- How many channels in the input? E.g. 3 for RGB.
    input_shape, # <- How big is the input in the different dimensions? E.g. (28, 28) for MNIST
    output_features, # <- How many different classes? E.g. 10 for MNIST.
    fourier_bands=4, # <- How many bands should the positional encoding have?
    latents=64, # <- How many latent vectors?
    d_model=32, # <- Model dimensionality. Every pixel/token/latent vector will have this size.
    heads=8, # <- How many heads in self-attention? Cross-attention always has 1 head.
    latent_blocks=6, # <- How much latent self-attention for each cross attention with the input?
    dropout=0.1, # <- Dropout
    layers=8, # <- This will become two unique layer-blocks: layer 1 and layer 2-8 (using weight sharing).
)

To use my pre-trained MNIST model (not very good):

from perceiver import load_mnist_model

model = load_mnist_model()

TODO:

  • Positional embedding generalized to n dimensions (with fourier features)
  • Train other models (like CIFAR-100 or something not in the image domain)
  • Type indication
  • Unit tests for components of model
  • Package
Owner
Louis Arge
Experienced full-stack developer. Self-studying machine learning.
Louis Arge
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022