Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

Overview

3D Infomax improves GNNs for Molecular Property Prediction

Video | Paper

We pre-train GNNs to understand the geometry of molecules given only their 2D molecular graph which they can use for better molecular property predictions. Below is a 3 step guide for how to use the code and how to reproduce our results. If you have questions, don't hesitate to open an issue or ask me via [email protected] or social media. I am happy to hear from you!

This repository additionally adapts different self-supervised learning methods to graphs such as "Bootstrap your own Latent", "Barlow Twins", or "VICReg".

Step 1: Setup Environment

We will set up the environment using Anaconda. Clone the current repo

git clone https://github.com/HannesStark/3DInfomax

Create a new environment with all required packages using environment.yml (this can take a while). While in the project directory run:

conda env create

Activate the environment

conda activate graphssl

Step 2: 3D Pre-train a model

Let's pre-train a GNN with 50 000 molecules and their structures from the QM9 dataset (you can also skip to Step 3 and use the pre-trained model weights provided in this repo). For other datasets see the Data section below.

python train.py --config=configs_clean/pre-train_QM9.yml

This will first create the processed data of dataset/QM9/qm9.csv with the 3D information in qm9_eV.npz. Then your model starts pre-training and all the logs are saved in the runs folder which will also contain the pre-trained model as best_checkpoint.pt that can later be loaded for fine-tuning.

You can start tensorboard and navigate to localhost:6006 in your browser to monitor the training process:

tensorboard --logdir=runs --port=6006

Explanation:

The config files in configs_clean provide additional examples and blueprints to train different models. The files always contain a model_type that should be pre-trained (2D network) and a model3d_type (3D network) where you can specify the parameters of these networks. To find out more about all the other parameters in the config file, have a look at their description by running python train.py --help.

Step 3: Fine-tune a model

During pre-training a directory is created in the runs directory that contains the pre-trained model. We provide an example of such a directory with already pre-trained weights runs/PNA_qmugs_NTXentMultiplePositives_620000_123_25-08_09-19-52 which we can fine-tune for predicting QM9's homo property as follows.

python train.py --config=configs_clean/tune_QM9_homo.yml

You can monitor the fine-tuning process on tensorboard as well and in the end the results will be printed to the console but also saved in the runs directory that was created for fine-tuning in the file evaluation_test.txt.

The model which we are fine-tuning from is specified in configs_clean/tune_QM9_homo.yml via the parameter:

pretrain_checkpoint: runs/PNA_qmugs_NTXentMultiplePositives_620000_123_25-08_09-19-52/best_checkpoint_35epochs.pt

Multiple seeds:

This is a second fine-tuning example where we predict non-quantum properties of the OGB datasets and train multiple seeds (we always use the seeds 1, 2, 3, 4, 5, 6 in our experiments):

python train.py --config=configs_clean/tune_freesolv.yml

After all runs are done, the averaged results are saved in the runs directory of each seed in the file multiple_seed_test_statistics.txt

Data

You can pre-train or fine-tune on different datasets by specifying the dataset: parameter in a .yml file such as dataset: drugs to use GEOM-Drugs.

The QM9 dataset and the OGB datasets are already provided with this repository. The QMugs and GEOM-Drugs datasets need to be downloaded and placed in the correct location.

GEOM-Drugs: Download GEOM-Drugs here ( the rdkit_folder.tar.gz file), unzip it, and place it into dataset/GEOM.

QMugs: Download QMugs here (the structures.tar and summary.csv files), unzip the structures.tar, and place the resulting structures folder and the summary.csv file into a new folder QMugs that you have to create NEXT TO the repository root. Not in the repository root (sorry for this).

Owner
Hannes Stärk
MIT Research Intern • Geometric DL + Graphs :heart: • M. Sc. Informatics from TU Munich
Hannes Stärk
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022