Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Overview

Randstad Artificial Intelligence Challenge (powered by VGEN)

Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Struttura directory del progetto

  • directory input:

  • directory output:

    • best_model.joblib: il migliore modello addestrato (su Windows), salvato con la libreria joblib
    • best_predictions.csv: file CSV delle predizioni del miglior modello sul test set, contenente le colonne Job_description, Label_true e Label_pred; il separatore è“;”(assente per motivi di copyright)
  • directory principale:

    • esplorazione_scelta_modello.ipynb: il notebook python che descrive il percorso di esplorazione e scelta del migliore modello machine learning
    • esplorazione_scelta_modello.html: esportazione in formato HTML del suddetto notebook
    • logo.jpg: logo della competizione
    • readme.md: questa guida
    • requirements.txt: le librerie python da installare per riprodurre l'ambiente di addestramento/predizione
    • slides.pdf: la presentazione della soluzione proposta
    • train_model_windows.py: versione Windows dello script python che consente di ripetere l'addestramento, la valutazione del modello, il salvataggio del modello e la scrittura del CSV con le predizioni
    • train_model_linux.py: versione Linux dello script python di addestramento
    • utils.py: modulo python contenente alcune funzioni necessarie per il training e la predizione
    • try_best_model.py: script python di esempio che mostra come caricare il modello salvato e usarlo per nuove predizioni

Preparazione dell'ambiente di esecuzione

Per eseguire gli script, è necessario Python>=3.6. Si consiglia di preparare l’ambiente di esecuzione mediante i seguenti passaggi:

  1. scaricamento del repository
  2. a partire dalla directory principale, creazione di un python virtual environment con il comando
    python3 -m venv venv
  3. attivazione del virtual environment
    • windows
      venv\Scripts\activate
    • linux
      source venv/bin/activate
  4. installazione delle librerie necessarie con il comando
    pip install -r requirements.txt

Esecuzione degli script

  • try_best_model è uno script python di esempio che mostra come caricare il migliore modello salvato e usarlo per nuove predizioni si lancia con la sintassi
    python try_best_model.py
  • Lo script train_model lancia l’addestramento del modello, seguito dalla stampa delle metriche valutate sul test set e può essere eseguito con la sintassi
    • Windows
      python train_model_windows.py
    • Linux
      python train_model_linux.py

      Possono essere specificati i parametri: --save-model (oppure -s), che salva il modello appena addestrato nella directory output, con un nome file indicante data e ora --get-predictions (oppure -p), che genera le predizioni sul test set in formato csv e le salva nella directory di output, con un nome file indicante data e ora

Nota

A causa di un bug noto di numpy, l'addestramento dei modelli su Windows e Linux non è completamente identico e, a parità di parametri e random state, produce modelli leggermenti diversi, con effetti sulle performance (F1).

Si è cercato il più possibile di ottenere modelli con performance vicine nei due sistemi operativi (facendo variare il random state).

Il migliore modello è stato addestrato in ambiente Windows ed è salvato come best_model.joblib. Le predizioni migliori (best_predictions.csv) sono relative a questo modello. Usando lo script fornito (train_model_windows.py), il modello può essere riaddestrato rapidamente (pochi secondi) in ambiente Windows. Anche se addestrato su Windows, può essere correttamente impiegato su Linux per la predizione.

Il modello per Linux, addestrabile con l’apposito script (train_model_linux.py), è molto simile a quello per Windows: le differenze riscontrabili a livello di performance (F1) sono inferiori a 0.001.

Attenzione: usando lo script di addestramento per Windows in ambiente Linux o viceversa, non si ottengono errori di esecuzione, ma il modello addestrato mostra delle performance qualitative (F1) inferiori a quelle attese.

Owner
Stefano Fiorucci
Machine learning engineer, Python developer
Stefano Fiorucci
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022