Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Overview

Randstad Artificial Intelligence Challenge (powered by VGEN)

Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Struttura directory del progetto

  • directory input:

  • directory output:

    • best_model.joblib: il migliore modello addestrato (su Windows), salvato con la libreria joblib
    • best_predictions.csv: file CSV delle predizioni del miglior modello sul test set, contenente le colonne Job_description, Label_true e Label_pred; il separatore è“;”(assente per motivi di copyright)
  • directory principale:

    • esplorazione_scelta_modello.ipynb: il notebook python che descrive il percorso di esplorazione e scelta del migliore modello machine learning
    • esplorazione_scelta_modello.html: esportazione in formato HTML del suddetto notebook
    • logo.jpg: logo della competizione
    • readme.md: questa guida
    • requirements.txt: le librerie python da installare per riprodurre l'ambiente di addestramento/predizione
    • slides.pdf: la presentazione della soluzione proposta
    • train_model_windows.py: versione Windows dello script python che consente di ripetere l'addestramento, la valutazione del modello, il salvataggio del modello e la scrittura del CSV con le predizioni
    • train_model_linux.py: versione Linux dello script python di addestramento
    • utils.py: modulo python contenente alcune funzioni necessarie per il training e la predizione
    • try_best_model.py: script python di esempio che mostra come caricare il modello salvato e usarlo per nuove predizioni

Preparazione dell'ambiente di esecuzione

Per eseguire gli script, è necessario Python>=3.6. Si consiglia di preparare l’ambiente di esecuzione mediante i seguenti passaggi:

  1. scaricamento del repository
  2. a partire dalla directory principale, creazione di un python virtual environment con il comando
    python3 -m venv venv
  3. attivazione del virtual environment
    • windows
      venv\Scripts\activate
    • linux
      source venv/bin/activate
  4. installazione delle librerie necessarie con il comando
    pip install -r requirements.txt

Esecuzione degli script

  • try_best_model è uno script python di esempio che mostra come caricare il migliore modello salvato e usarlo per nuove predizioni si lancia con la sintassi
    python try_best_model.py
  • Lo script train_model lancia l’addestramento del modello, seguito dalla stampa delle metriche valutate sul test set e può essere eseguito con la sintassi
    • Windows
      python train_model_windows.py
    • Linux
      python train_model_linux.py

      Possono essere specificati i parametri: --save-model (oppure -s), che salva il modello appena addestrato nella directory output, con un nome file indicante data e ora --get-predictions (oppure -p), che genera le predizioni sul test set in formato csv e le salva nella directory di output, con un nome file indicante data e ora

Nota

A causa di un bug noto di numpy, l'addestramento dei modelli su Windows e Linux non è completamente identico e, a parità di parametri e random state, produce modelli leggermenti diversi, con effetti sulle performance (F1).

Si è cercato il più possibile di ottenere modelli con performance vicine nei due sistemi operativi (facendo variare il random state).

Il migliore modello è stato addestrato in ambiente Windows ed è salvato come best_model.joblib. Le predizioni migliori (best_predictions.csv) sono relative a questo modello. Usando lo script fornito (train_model_windows.py), il modello può essere riaddestrato rapidamente (pochi secondi) in ambiente Windows. Anche se addestrato su Windows, può essere correttamente impiegato su Linux per la predizione.

Il modello per Linux, addestrabile con l’apposito script (train_model_linux.py), è molto simile a quello per Windows: le differenze riscontrabili a livello di performance (F1) sono inferiori a 0.001.

Attenzione: usando lo script di addestramento per Windows in ambiente Linux o viceversa, non si ottengono errori di esecuzione, ma il modello addestrato mostra delle performance qualitative (F1) inferiori a quelle attese.

Owner
Stefano Fiorucci
Machine learning engineer, Python developer
Stefano Fiorucci
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022