Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Related tags

Deep LearningIALS
Overview

Instance-Aware Latent-Space Search

This is a PyTorch implementation of the following paper:

Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, IJCAI 2021.

Yuxuan Han, Jiaolong Yang and Ying Fu

Paper: https://arxiv.org/abs/2105.12660.

Abstract: Recent works have shown that a rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs), which enables various facial attribute editing applications. However, existing methods may suffer poor attribute variation disentanglement, leading to unwanted change of other attributes when altering the desired one. The semantic directions used by existing methods are at attribute level, which are difficult to model complex attribute correlations, especially in the presence of attribute distribution bias in GAN’s training set. In this paper, we propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing. The instance information is injected by leveraging the supervision from a set of attribute classifiers evaluated on the input images. We further propose a Disentanglement-Transformation (DT) metric to quantify the attribute transformation and disentanglement efficacy and find the optimal control factor between attribute-level and instance-specific directions based on it. Experimental results on both GAN-generated and real-world images collectively show that our method outperforms state-of-the-art methods proposed recently by a wide margin.

Requirements

It's quite easy to create the environment for our model, you only need:

  • Python 3.7 and the basic Anaconda3 environment.
  • PyTorch 1.x with GPU support (a single NVIDIA GTX 1060 is enough).
  • The tqdm library to visualize the progress bar.

Reproduce Results

Download the pretrain directory from here and put it on the root directory of this repository. If your environment meets our requirements, you will see an editing result in test_env.jpg using the following command.

python edit_single_attr.py --seed 0 --step 0.5 --n_steps 4 --dataset ffhq --base interfacegan --attr male --save_path test_env.jpg
  • Edit a random image generated by StyleGAN. You can specify the primal and condition attributes and the seed. Here we set gender as the primal attribute and expression as the condition attribute.
# reproduce our results:
python condition_manipulation.py --seed 0 --step 0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 0.75 --lambda2 0 --real_image 0 --save_path rand-ours.jpg

# reproduce interfacegan results:
python condition_manipulation.py --seed 0 --step 0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 1 --lambda2 1 --real_image 0 --save_path rand-inter.jpg
  • Edit a real face image via our instance-aware direction. In the pretrain\real_latent_code folder we put lots of pretrained latent code provided by seeprettyface. If you want to edit customized face images, please refer to the next section. Note: If lambda1=lambda2=1, our method degrades to the attribute-level semantic direction based methods like InterfaceGAN and GANSpace.
# reproduce our results:
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 young --attr2 eyeglasses --lambda1 0.75 --lambda2 0 --real_image 1 --latent_code_path pretrain\real_latent_code\real1.npy --save_path real-ours.jpg

# reproduce interfacegan results: 
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 young --attr2 eyeglasses --lambda1 1 --lambda2 1 --real_image 1 --latent_code_path pretrain\real_latent_code\real1.npy --save_path real-inter.jpg
  • Compute the attribute-level direction by average the instance-specific direction.
python train_attr_level_direction.py --n_images 500 --attr pose

Editing Your Own Image

Typically you need to follow the steps below:

  1. Obtain the latent code of the real image via GAN Inversion. Here we provide a simple baseline GAN-Inversion method in gan_inversion.py.
python gan_inversion.py --n_iters 500 --img_path image\real_face_sample.jpg
  1. Editing the real face image's latent code with our method.
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 10 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 0.75 --lambda2 0 --real_image 1 --latent_code_path rec.npy --save_path real-ours.jpg

You will see the result like that:

To improve the editing quality, we highly recommand you to use the state-of-the-art GAN inversion method like Id-Invert or pixel2image2pixel. Note: You need to make sure that these GAN inversion methods use the same pretrained StyleGAN weights as us.

Contact

If you have any questions, please contact Yuxuan Han ([email protected]).

Citation

Please cite the following paper if this model helps your research:

@inproceedings{han2021IALS,
    title={Disentangled Face Attribute Editing via Instance-Aware Latent Space Search},
    author={Yuxuan Han, Jiaolong Yang and Ying Fu},
    booktitle={International Joint Conference on Artificial Intelligence},
    year={2021}
}

Acknowledgments

This code borrows the StyleGAN generator implementation from https://github.com/lernapparat/lernapparat and uses the pretrained real image's latent code provided by http://www.seeprettyface.com/index_page6.html. We thank for their great effort!

Owner
Currently a junior student at BIT, interested in computer vision and graphics.
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021