Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

Related tags

Deep LearningSSTNet
Overview

SSTNet

PWC PWC

overview Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia*. (*) Corresponding author. [arxiv]

Introduction

Instance segmentation in 3D scenes is fundamental in many applications of scene understanding. It is yet challenging due to the compound factors of data irregularity and uncertainty in the numbers of instances. State-of-the-art methods largely rely on a general pipeline that first learns point-wise features discriminative at semantic and instance levels, followed by a separate step of point grouping for proposing object instances. While promising, they have the shortcomings that (1) the second step is not supervised by the main objective of instance segmentation, and (2) their point-wise feature learning and grouping are less effective to deal with data irregularities, possibly resulting in fragmented segmentations. To address these issues, we propose in this work an end-to-end solution of Semantic Superpoint Tree Network (SSTNet) for proposing object instances from scene points. Key in SSTNet is an intermediate, semantic superpoint tree (SST), which is constructed based on the learned semantic features of superpoints, and which will be traversed and split at intermediate tree nodes for proposals of object instances. We also design in SSTNet a refinement module, termed CliqueNet, to prune superpoints that may be wrongly grouped into instance proposals.

Installation

Requirements

  • Python 3.8.5
  • Pytorch 1.7.1
  • torchvision 0.8.2
  • CUDA 11.1

then install the requirements:

pip install -r requirements.txt

SparseConv

For the SparseConv, please refer PointGroup's spconv to install.

Extension

This project is based on our Gorilla-Lab deep learning toolkit - gorilla-core and 3D toolkit gorilla-3d.

For gorilla-core, you can install it by running:

pip install gorilla-core==0.2.7.6

or building from source(recommend)

git clone https://github.com/Gorilla-Lab-SCUT/gorilla-core
cd gorilla-core
python setup.py install(develop)

For gorilla-3d, you should install it by building from source:

git clone https://github.com/Gorilla-Lab-SCUT/gorilla-3d
cd gorilla-3d
python setup.py develop

Tip: for high-version torch, the BuildExtension may fail by using ninja to build the compile system. If you meet this problem, you can change the BuildExtension in cmdclass={"build_ext": BuildExtension} as cmdclass={"build_ext": BuildExtension}.with_options(use_ninja=False)

Otherwise, this project also need other extension, we use the pointgroup_ops to realize voxelization and use the segmentator to generate superpoints for scannet scene. we use the htree to construct the Semantic Superpoint Tree and the hierarchical node-inheriting relations is realized based on the modified cluster.hierarchy.linkage function from scipy.

  • For pointgroup_ops, we modified the package from PointGroup to let its function calls get rid of the dependence on absolute paths. You can install it by running:
    conda install -c bioconda google-sparsehash 
    cd $PROJECT_ROOT$
    cd sstnet/lib/pointgroup_ops
    python setup.py develop
    Then, you can call the function like:
    import pointgroup_ops
    pointgroup_ops.voxelization
    >>> <function Voxelization.apply>
  • For htree, it can be seen as a supplement to the treelib python package, and I abstract the SST through both of them. You can install it by running:
    cd $PROJECT_ROOT$
    cd sstnet/lib/htree
    python setup.py install

    Tip: The interaction between this piece of code and treelib is a bit messy. I lack time to organize it, which may cause some difficulties for someone in understanding. I am sorry for this. At the same time, I also welcome people to improve it.

  • For cluster, it is originally a sub-module in scipy, the SST construction requires the cluster.hierarchy.linkage to be implemented. However, the origin implementation do not consider the sizes of clustering nodes (each superpoint contains different number of points). To this end, we modify this function and let it support the property mentioned above. So, for used, you can install it by running:
    cd $PROJECT_ROOT$
    cd sstnet/lib/cluster
    python setup.py install
  • For segmentator, please refer here to install. (We wrap the segmentator in ScanNet)

Data Preparation

Please refer to the README.md in data/scannetv2 to realize data preparation.

Training

CUDA_VISIBLE_DEVICES=0 python train.py --config config/default.yaml

You can start a tensorboard session by

tensorboard --logdir=./log --port=6666

Tip: For the directory of logging, please refer the implementation of function gorilla.collect_logger.

Inference and Evaluation

CUDA_VISIBLE_DEVICES=0 python test.py --config config/default.yaml --pretrain pretrain.pth --eval
  • --split is the evaluation split of dataset.
  • --save is the action to save instance segmentation results.
  • --eval is the action to evaluate the segmentation results.
  • --semantic is the action to evaluate semantic segmentation only (work on the --eval mode).
  • --log-file is to define the logging file to save evaluation result (default please to refer the gorilla.collect_logger).
  • --visual is the action to save visualization of instance segmentation. (It will be mentioned in the next partion.)

Results on ScanNet Benchmark

Rank 1st on the ScanNet benchmark benchmark

Pretrained

We provide a pretrained model trained on ScanNet(v2) dataset. [Google Drive] [Baidu Cloud] (提取码:f3az) Its performance on ScanNet(v2) validation set is 49.4/64.9/74.4 in terms of mAP/mAP50/mAP25.

Acknowledgement

This repo is built upon several repos, e.g., PointGroup, spconv and ScanNet.

Contact

If you have any questions or suggestions about this repo or paper, please feel free to contact me in issue or email ([email protected]).

TODO

  • Distributed training(not verification)
  • Batch inference
  • Multi-processing for getting superpoints

Citation

If you find this work useful in your research, please cite:

@misc{liang2021instance,
      title={Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks}, 
      author={Zhihao Liang and Zhihao Li and Songcen Xu and Mingkui Tan and Kui Jia},
      year={2021},
      eprint={2108.07478},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Research lab focusing on CV, ML, and AI
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022