CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

Related tags

Deep LearningCHERRY
Overview

CHERRY CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link prediction decoder.

Overview

There are two kind of tasks that CHERRY can work:

  1. Host prediction for virus
  2. Identifying viruses that infect pathogenic bacteria

Users can choose one of the task when running CHERRY. If you have any trouble installing or using CHERRY, please let us know by opening an issue on GitHub or emailing us ([email protected]).

Required Dependencies

  • Python 3.x
  • Numpy
  • Pytorch>1.8.0
  • Networkx
  • Pandas
  • Diamond
  • BLAST
  • MCL
  • Prodigal

All these packages can be installed using Anaconda.

If you want to use the gpu to accelerate the program:

  • cuda
  • Pytorch-gpu

An easiler way to install

We recommend you to install all the package with Anaconda

After cloning this respository, you can use anaconda to install the CHERRY.yaml. This will install all packages you need with gpu mode (make sure you have installed cuda on your system to use the gpu version. Othervise, it will run with cpu version). The command is: conda env create -f CHERRY.yaml

  • For cpu version pytorch: conda install pytorch torchvision torchaudio cpuonly -c pytorch
  • For gpu version pytorch: Search pytorch to find the correct cuda version according to your computer Note: we suggest you to install all the package using conda (both miniconda and anaconda are ok). We supply a

Prepare the database

Due to the limited size of the GitHub, we zip the database. Before using CHEERY, you need to unpack them using the following commands.

cd CHEERY/dataset
bzip2 -d protein.fasta.bz2
bzip2 -d nucl.fasta.bz2
cd ../prokaryote
gunzip *
cd ..

Usage

1 Predicting host for viruses

If you want to predict hosts for viruses, the input should be a fasta file containing the virual sequences. We support an example file named "test_contigs.fa" in the Github folder. Then, the only command that you need to run is

python run_Speed_up.py [--contigs INPUT_FA] [--len MINIMUM_LEN] [--model MODEL] [--topk TOPK_PRED]

Options

  --contigs INPUT_FA
                        input fasta file
  --len MINIMUM_LEN
                        predict only for sequence >= len bp (default 8000)
  --model MODEL (pretrain or retrain)
                        predicting host with pretrained parameters or retrained paramters (default pretrain)
  --topk TOPK_PRED
                        The host prediction with topk score (default 1)

Example

Prediction on species level with pretrained paramters:

python run_Speed_up.py --contigs test_contigs.fa --len 8000 --model pretrain --topk 3

Note: Commonly, you do not need to retrain the model, especially when you do not have gpu unit.

OUTPUT

The format of the output file is a csv file ("final_prediction.csv") which contain the prediction of each virus. Column contig_name is the accession from the input.

Since the topk method is given, we cannot give the how taxaonmic tree for each prediction. However, we will supply a script for you to convert the prediction into a complte taxonmoy tree. Use the following command to generate taxonomy tree:

python run_Taxonomy_tree.py [--k TOPK_PRED]

Because there are k prediction in the "final_prediction.csv" file, you need to specify the k to generate the tree. The output of program is 'Top_k_prediction_taxonomy.csv'.

2 Predicting virus infecting prokaryote

If you want to predict hosts for viruses, you need to supply two kinds of inputs:

  1. Place your prokaryotic genomes in new_prokaryote/ folder.
  2. A fasta file containing the virus squences. Then, the program will output which virus in your fasta file will infect the prkaryotes in the new_prokaryote/ folder.

The command is simlar to the previous one but two more paramter is need:

python run_Speed_up.py [--mode MODE] [--t THRESHOLD]

Example

python run_Speed_up.py --contigs test_contigs.fa --mode prokaryote --t 0.98

Options

  --mode MODE (prokaryote or virus)
                        Switch mode for predicting virus or predicting host
  --t THRESHOLD
                        The confident threshold for predicting virus, the higier the threshold the higher the precision. (default 0.98)

OUTPUT

The format of the output file is a csv file which contain the prediction of each virus. Column prokaryote is the accession of your given prokaryotic genomes. Column virus is the list of viruses that might infect these genomes.

Extension of the parokaryotic genomes database

Due to the limitation of storage on GitHub, we only provided the parokaryote with known interactions (Date up to 2020) in prokaryote folder. If you want to predict interactions with more species, please place your parokaryotic genomes into prokaryote/ folder and add an entry of taxonomy information into dataset/prokaryote.csv. We also recommand you only add the prokaryotes of interest to save the computation resourse and time. This is because all the genomes in prokaryote folder will be used to generate the multimodal graph, which is a O(n^2) algorithm.

Example

If you have a metagenomic data and you know that only E. coli, Butyrivibrio fibrisolvens, and Faecalibacterium prausnitzii exist in the metagenomic data. Then you can placed the genomes of these three species into the prokaryote/ and add the entry in dataset/prokaryote.csv. An example of the entry is look like:

GCF_000007445,Bacteria,Proteobacteria,Gammaproteobacteria,Enterobacterales,Enterobacteriaceae,Escherichia,Escherichia coli

The corresponding header of the entry is: Accession,Superkingdom,Phylum,Class,Order,Family,Genus,Species. If you do not know the whole taxonomy tree, you can directly use a specific name for all columns. Because CHERRY is a link prediction tool, it will directly use the given name for prediction.

Noted: Since our program will use the accession for searching and constructing the knowledge graph, the name of the fasta file of your genomes should be the same as the given accession. For example, if your accession is GCF_000007445, your file name should be GCF_000007445.fa. Otherwise, the program cannot find the entry.

Extension of the virus-prokaryote interactions database

If you know more virus-prokaryote interactions than our pre-trained model (given in Interactiondata), you can add them to train a custom model. Several steps you need to do to train your model:

  1. Add your viral genomes into the nucl.fasta file and run the python refresh.py to generate new protein.fasta and database_gene_to_genome.csv files. They will replace the old one in the dataset/ folder automatically.
  2. Add the entrys of host taxonomy information into dataset/virus.csv. The corresponding header of the entry is: Accession (of the virus), Superkingdom, Phylum, Class, Order, Family, Genus, Species. The required field is Species. You can left it blank if you do not know other fields. Also, the accession of the virus shall be the same as your fasta entry.
  3. Place your prokaryotic genomes into the the prokaryote/ folder and add an entry in dataset/prokaryote.csv. The guideline is the same as the previous section.
  4. Use retrain as the parameter for --mode option to run the program.

References

The paper is submitted to the Briefings in Bioinformatics.

The arXiv version can be found via: CHERRY: a Computational metHod for accuratE pRediction of virus-pRokarYotic interactions using a graph encoder-decoder model

Contact

If you have any questions, please email us: [email protected]

Notes

  1. if the program output an error (which is caused by your machine): Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library. You can type in the command export MKL_SERVICE_FORCE_INTEL=1 before runing run_Speed_up.py
Owner
Kenneth Shang
Kenneth Shang
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
571 Dec 25, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023