Official code release for: EditGAN: High-Precision Semantic Image Editing

Overview

EditGAN

Official code release for:

EditGAN: High-Precision Semantic Image Editing

Huan Ling*, Karsten Kreis*, Daiqing Li, Seung Wook Kim, Antonio Torralba, Sanja Fidler

(* authors contributed equally)

NeurIPS 2021

[project page] [paper] [supplementary material]

Demos and results

Left: The video showcases EditGAN in an interacitve demo tool. Right: The video demonstrates EditGAN where we apply multiple edits and exploit pre-defined editing vectors. Note that the demo is accelerated. See paper for run times.

Left: The video shows interpolations and combinations of multiple editing vectors. Right: The video presents the results of applying EditGAN editing vectors on out-of-domain images.

Requirements

  • Python 3.8 is supported.

  • Pytorch >= 1.4.0.

  • The code is tested with CUDA 10.1 toolkit with Pytorch==1.4.0 and CUDA 11.4 with Pytorch==1.10.0.

  • All results in our paper are based on NVIDIA Tesla V100 GPUs with 32GB memory.

  • Set up python environment:

virtualenv env
source env/bin/activate
pip install -r requirements.txt
  • Add the project to PYTHONPATH:
export PYTHONPATH=$PWD

Use of pre-trained model

We released a pre-trained model for the car class. Follow these steps to set up our interactive WebAPP:

  • Download all checkpoints from checkpoints and put them into a ./checkpoint folder:

    • ./checkpoint/stylegan_pretrain: Download the pre-trained checkpoint from StyleGAN2 and convert the tensorflow checkpoint to pytorch. We also released the converted checkpoint for your convenience.
    • ./checkpoint/encoder_pretrain: Pre-trained encoder.
    • ./checkpoint/encoder_pretrain/testing_embedding: Test image embeddings.
    • ./checkpoint/encoder_pretrain/training_embedding: Training image embeddings.
    • ./checkpoint/datasetgan_pretrain: Pre-trained DatasetGAN (segmentation branch).
  • Run the app using python run_app.py.

  • The app is then deployed on the web browser at locolhost:8888.

Training your own model

Here, we provide step-by-step instructions to create a new EditGAN model. We use our fully released car class as an example.

  • Step 0: Train StyleGAN.

    • Download StyleGAN training images from LSUN.

    • Train your own StyleGAN model using the official StyleGAN2 code and convert the tensorflow checkpoint to pytorch. Note the specific "stylegan_checkpoint" fields in experiments/datasetgan_car.json ; experiments/encoder_car.json ; experiments/tool_car.json.

  • Step 1: Train StyleGAN Encoder.

    • Specify location of StyleGAN checkpoint in the "stylegan_checkpoint" field in experiments/encoder_car.json.

    • Specify path with training images downloaded in Step 0 in the "training_data_path" field in experiments/encoder_car.json.

    • Run python train_encoder.py --exp experiments/encoder_car.json.

  • Step 2: Train DatasetGAN.

    • Specify "stylegan_checkpoint" field in experiments/datasetgan_car.json.

    • Download DatasetGAN training images and annotations from drive and fill in "annotation_mask_path" in experiments/datasetgan_car.json.

    • Embed DatasetGAN training images in latent space using

      python train_encoder.py --exp experiments/encoder_car.json --resume *encoder checkppoint* --testing_path data/annotation_car_32_clean --latent_sv_folder model_encoder/car_batch_8_loss_sampling_train_stylegan2/training_embedding --test True
      

      and complete "optimized_latent_path" in experiments/datasetgan_car.json.

    • Train DatasetGAN (interpreter branch for segmentation) via

      python train_interpreter.py --exp experiments/datasetgan_car.json
      
  • Step 3: Run the app.

    • Download DatasetGAN test images and annotations from drive.

    • Embed DatasetGAN test images in latent space via

      python train_encoder.py --exp experiments/encoder_car.json --resume *encoder checkppoint* --testing_path *testing image path* --latent_sv_folder model_encoder/car_batch_8_loss_sampling_train_stylegan2/training_embedding --test True
      
    • Specify the "stylegan_checkpoint", "encoder_checkpoint", "classfier_checkpoint", "datasetgan_testimage_embedding_path" fields in experiments/tool_car.json.

    • Run the app via python run_app.py.

Citations

Please use the following citation if you use our data or code:

@inproceedings{ling2021editgan,
  title = {EditGAN: High-Precision Semantic Image Editing}, 
  author = {Huan Ling and Karsten Kreis and Daiqing Li and Seung Wook Kim and Antonio Torralba and Sanja Fidler},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

License

Copyright © 2022, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License-NC. Please see our main LICENSE file.

License Dependencies

For any code dependencies related to StyleGAN2, the license is the Nvidia Source Code License-NC by NVIDIA Corporation, see StyleGAN2 LICENSE.

For any code dependencies related to DatasetGAN, the license is the MIT License, see DatasetGAN LICENSE.

The dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

For any code dependencies related to the frontend tool (including html, css and Javascript), the license is the Nvidia Source Code License-NC. To view a copy of this license, visit ./static/LICENSE.md. To view a copy of terms of usage, visit ./static/term.txt.

Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022