Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Overview

Awesome Few-Shot Object Detection (FSOD)

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Maintainers: Gabriel Huang

For an introduction to the few-shot object detection framework read below, or check our our survey on few-shot and self-supervised object detection and its project page for full explanations, discussions on the pitfalls of the Pascal, COCO, and LVIS benchmarks used below, main takeaways and future research directions.

Contributing

If you want to add your paper or report a mistake, please create a pull request with all supporting information. Thanks!

Pascal VOC and MS COCO FSOD Leaderboard

In this table we distinguish Kang's Splits (Meta-YOLO) from TFA's splits (Frustratingly Simple FSOD), as the Kang splits have been shown to have high variance and overestimate performance for low number of shots (see for yourself -- check the difference between TFA 1-shot and Kang 1-shot in the table below).

Name Type VOC TFA 1-shot (mAP50) VOC TFA 3-shot (mAP50) VOC TFA 10-shot (mAP50) VOC Kang 1-shot (mAP50) VOC Kang 3-shot (mAP50) VOC Kang 10-shot (mAP50) MS COCO 10-shot (mAP) MS COCO 30-shot (mAP)
LSTD finetuning - - - 8.2 12.4 38.5 - -
RepMet prototype - - - 26.1 34.4 41.3 - -
Meta-YOLO modulation 14.2 29.8 - 14.8 26.7 47.2 5.6 9.1
MetaDet modulation - - - 18.9 30.2 49.6 7.1 11.3
Meta-RCNN modulation - - - 19.9 35.0 51.5 8.7 12.4
Faster RCNN+FT finetuning 9.9 21.6 35.6 15.2 29.0 45.5 9.2 12.5
ACM-MetaRCNN modulation - - - 31.9 35.9 53.1 9.4 12.8
TFA w/fc finetuning 22.9 40.4 52.0 36.8 43.6 57.0 10.0 13.4
TFA w/cos finetuning 25.3 42.1 52.8 39.8 44.7 56.0 10.0 13.7
Retentive RCNN finetuning - - - 42.0 46.0 56.0 10.5 13.8
MPSR finetuning - - - 41.7 51.4 61.8 9.8 14.1
Attention-FSOD modulation - - - - - - 12.0 -
FsDetView finetuning 24.2 42.2 57.4 - - - 12.5 14.7
CME finetuning - - - 41.5 50.4 60.9 15.1 16.9
TIP add-on 27.7 43.3 59.6 - - - 16.3 18.3
DAnA modulation - - - - - - 18.6 21.6
DeFRCN prototype - - - 53.6 61.5 60.8 18.5 22.6
Meta-DETR modulation 20.4 46.6 57.8 - - - 17.8 22.9
DETReg finetuning - - - - - - 18.0 30.0

Few-Shot Object Detection Explained

We explain the few-shot object detection framework as defined by the Meta-YOLO paper (Kang's splits - full details here). FSOD partitions objects into two disjoint sets of categories: base or known/source classes, which are object categories for which we have access to a large number of training examples; and novel or unseen/target classes, for which we have only a few training examples (shots) per class. The FSOD task is formalized into the following steps:

  • 1. Base training.¹ Annotations are given only for the base classes, with a large number of training examples per class (bikes in the example). We train the FSOD method on the base classes.
  • 2. Few-shot finetuning. Annotations are given for the support set, a very small number of training examples from both the base and novel classes (one bike and one human in the example). Most methods finetune the FSOD model on the support set, but some methods might only use the support set for conditioning during evaluation (finetuning-free methods).
  • 3. Few-shot evaluation. We evaluate the FSOD to jointly detect base and novel classes from the test set (few-shot refers to the size of the support set). The performance metrics are reported separately for base and novel classes. Common evaluation metrics are variants of the mean average precision: mAP50 for Pascal and COCO-style mAP for COCO. They are often denoted bAP50, bAP75, bAP (resp. nAP50, nAP75, nAP) for the base and novel classes respectively, where the number is the IoU-threshold in percentage.

In pure FSOD, methods are usually compared solely on the basis of novel class performance, whereas in Generalized FSOD, methods are compared on both base and novel class performances [2]. Note that "training" and "test" set refer to the splits used in traditional object detection. Base and novel classes are typically present in both the training and testing sets; however, the novel class annotations are filtered out from the training set during base training; during few-shot finetuning, the support set is typically taken to be a (fixed) subset of the training set; during few-shot evaluation, all of the test set is used to reduce uncertainty [1].

For conditioning-based methods with no finetuning, few-shot finetuning and few-shot evaluation are merged into a single step; the novel examples are used as support examples to condition the model, and predictions are made directly on the test set. In practice, the majority of conditioning-based methods reviewed in this survey do benefit from some form of finetuning.

*¹In the context of self-supervised learning, base-training may also be referred to as finetuning or training. This should not be confused with base training in the meta-learning framework; rather this is similar to the meta-training phase [3].

Owner
Gabriel Huang
PhD student at MILA
Gabriel Huang
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022