Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

Related tags

Deep LearningGSDT
Overview

GSDT

Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here. If you find our work useful, we'd appreciate you citing our paper as follows:

@article{Wang2020_GSDT, 
author = {Wang, Yongxin and Kitani, Kris and Weng, Xinshuo}, 
journal = {arXiv:2006.13164}, 
title = {{Joint Object Detection and Multi-Object Tracking with Graph Neural Networks}}, 
year = {2020} 
}

Introduction

Object detection and data association are critical components in multi-object tracking (MOT) systems. Despite the fact that the two components are dependent on each other, prior work often designs detection and data association modules separately which are trained with different objectives. As a result, we cannot back-propagate the gradients and optimize the entire MOT system, which leads to sub-optimal performance. To address this issue, recent work simultaneously optimizes detection and data association modules under a joint MOT framework, which has shown improved performance in both modules. In this work, we propose a new instance of joint MOT approach based on Graph Neural Networks (GNNs). The key idea is that GNNs can model relations between variable-sized objects in both the spatial and temporal domains, which is essential for learning discriminative features for detection and data association. Through extensive experiments on the MOT15/16/17/20 datasets, we demonstrate the effectiveness of our GNN-based joint MOT approach and show the state-of-the-art performance for both detection and MOT tasks.

Usage

Dependencies

We recommend using anaconda for managing dependency and environments. You may follow the commands below to setup your environment.

conda create -n dev python=3.6
conda activate dev
pip install -r requirements.txt

We use the PyTorch Geometric package for the implementation of our Graph Neural Network based architecture.

bash install_pyg.sh   # we used CUDA_version=cu101 

Build Deformable Convolutional Networks V2 (DCNv2)

cd ./src/lib/models/networks/DCNv2
bash make.sh

To automatically generate output tracking as videos, please install ffmpeg

conda install ffmpeg=4.2.2

Data preperation

We follow the same dataset setup as in JDE. Please refer to their DATA ZOO for data download and preperation.

To prepare 2DMOT15 and MOT20 data, you can directly download from the MOT Challenge website, and format each directory as follows:

MOT15
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)
MOT20
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)

Then change the seq_root and label_root in src/gen_labels_15.py and src/gen_labels_20.py accordingly, and run:

cd src
python gen_labels_15.py
python gen_labels_20.py

This will generate the desired label format of 2DMOT15 and MOT20. The seqinfo.ini files are required for 2DMOT15 and can be found here [Google], [Baidu],code:8o0w.

Inference

Download and save the pretrained weights for each dataset by following the links below:

Dataset Model
2DMOT15 model_mot15.pth
MOT17 model_mot17.pth
MOT20 model_mot20.pth

Run one of the following command to reproduce our paper's tracking performance on the MOT Challenge.

cd ./experiments
track_gnn_mot_AGNNConv_RoIAlign_mot15.sh 
track_gnn_mot_AGNNConv_RoIAlign_mot17.sh 
track_gnn_mot_AGNNConv_RoIAlign_mot20.sh 

To clarify, currently we directly used the MOT17 results as MOT16 results for submission. That is, our MOT16 and MOT17 results and models are identical.

Training

We are currently in the process of cleaning the training code. We'll release as soon as we can. Stay tuned!

Performance on MOT Challenge

You can refer to MOTChallenge website for performance of our method. For your convenience, we summarize results below:

Dataset MOTA IDF1 MT ML IDS
2DMOT15 60.7 64.6 47.0% 10.5% 477
MOT16 66.7 69.2 38.6% 19.0% 959
MOT17 66.2 68.7 40.8% 18.3% 3318
MOT20 67.1 67.5 53.1% 13.2% 3133

Acknowledgement

A large part of the code is borrowed from FairMOT. We appreciate their great work!

Owner
Richard Wang
Richard Wang
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023