Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

Related tags

Deep LearningGSDT
Overview

GSDT

Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here. If you find our work useful, we'd appreciate you citing our paper as follows:

@article{Wang2020_GSDT, 
author = {Wang, Yongxin and Kitani, Kris and Weng, Xinshuo}, 
journal = {arXiv:2006.13164}, 
title = {{Joint Object Detection and Multi-Object Tracking with Graph Neural Networks}}, 
year = {2020} 
}

Introduction

Object detection and data association are critical components in multi-object tracking (MOT) systems. Despite the fact that the two components are dependent on each other, prior work often designs detection and data association modules separately which are trained with different objectives. As a result, we cannot back-propagate the gradients and optimize the entire MOT system, which leads to sub-optimal performance. To address this issue, recent work simultaneously optimizes detection and data association modules under a joint MOT framework, which has shown improved performance in both modules. In this work, we propose a new instance of joint MOT approach based on Graph Neural Networks (GNNs). The key idea is that GNNs can model relations between variable-sized objects in both the spatial and temporal domains, which is essential for learning discriminative features for detection and data association. Through extensive experiments on the MOT15/16/17/20 datasets, we demonstrate the effectiveness of our GNN-based joint MOT approach and show the state-of-the-art performance for both detection and MOT tasks.

Usage

Dependencies

We recommend using anaconda for managing dependency and environments. You may follow the commands below to setup your environment.

conda create -n dev python=3.6
conda activate dev
pip install -r requirements.txt

We use the PyTorch Geometric package for the implementation of our Graph Neural Network based architecture.

bash install_pyg.sh   # we used CUDA_version=cu101 

Build Deformable Convolutional Networks V2 (DCNv2)

cd ./src/lib/models/networks/DCNv2
bash make.sh

To automatically generate output tracking as videos, please install ffmpeg

conda install ffmpeg=4.2.2

Data preperation

We follow the same dataset setup as in JDE. Please refer to their DATA ZOO for data download and preperation.

To prepare 2DMOT15 and MOT20 data, you can directly download from the MOT Challenge website, and format each directory as follows:

MOT15
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)
MOT20
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)

Then change the seq_root and label_root in src/gen_labels_15.py and src/gen_labels_20.py accordingly, and run:

cd src
python gen_labels_15.py
python gen_labels_20.py

This will generate the desired label format of 2DMOT15 and MOT20. The seqinfo.ini files are required for 2DMOT15 and can be found here [Google], [Baidu],code:8o0w.

Inference

Download and save the pretrained weights for each dataset by following the links below:

Dataset Model
2DMOT15 model_mot15.pth
MOT17 model_mot17.pth
MOT20 model_mot20.pth

Run one of the following command to reproduce our paper's tracking performance on the MOT Challenge.

cd ./experiments
track_gnn_mot_AGNNConv_RoIAlign_mot15.sh 
track_gnn_mot_AGNNConv_RoIAlign_mot17.sh 
track_gnn_mot_AGNNConv_RoIAlign_mot20.sh 

To clarify, currently we directly used the MOT17 results as MOT16 results for submission. That is, our MOT16 and MOT17 results and models are identical.

Training

We are currently in the process of cleaning the training code. We'll release as soon as we can. Stay tuned!

Performance on MOT Challenge

You can refer to MOTChallenge website for performance of our method. For your convenience, we summarize results below:

Dataset MOTA IDF1 MT ML IDS
2DMOT15 60.7 64.6 47.0% 10.5% 477
MOT16 66.7 69.2 38.6% 19.0% 959
MOT17 66.2 68.7 40.8% 18.3% 3318
MOT20 67.1 67.5 53.1% 13.2% 3133

Acknowledgement

A large part of the code is borrowed from FairMOT. We appreciate their great work!

Owner
Richard Wang
Richard Wang
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Facebook Research 605 Jan 02, 2023
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022