Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Related tags

Deep LearningXDCC
Overview

Extreme Dynamic Classifier Chains

Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies effectively. However, the classifiers arealigned according to a static order of the labels. In the concept of dynamic classifier chains (DCC) the label ordering is chosen for each prediction dynamically depending on the respective instance at hand. We combine this concept with the boosting of extreme gradient boosted trees (XGBoot), an effective and scalable state-of-the-art technique, and incorporate DCC in a fast multi-label extension of XGBoost which we make publicly available. As only positive labels have to be predicted and these are usually only few, the training costs can be further substantially reduced. Moreover, as experiments on ten datasets show, the length of the chain allows for a more control over the usage of previous predictions and hence over the measure one want to optimize,

Installation

The first step requires to build the modified multilabel version of XGBoost and install the resulting python package to build the dynamic chain model. This requires MinGW, i.e. the mingw32-make command, and Python 3. To start the build run the following commands:

cd XGBoost_ML
mingw32-make -j4

After a successful execution the python package can be installed.

cd python-package
python setup.py install

You should now be able to import the package into your Python project:

import xgboost as xgb

Training the Dynamic Chain Model

We recommend running the models by calling train_dcc.py from within a console. Place all datasets as .arff files into the datasets directory. Append -train to the train set and -test to the test set.

Parameters:

The following parameters are available:

Parameter Short Description Required
--filename <string> -f Name of your dataset .arff file located in the datasets sub-directory yes
--num_labels <int> -l Number of Labels in the dataset yes
--models <string> -m Specifies all models that will be build. Available options:
  • dcc: The proposed dynamic chain model
  • sxgb: A single multilabel XGBoost model
  • cc-dcc: A classifier chain with the label order of a previously built dynamic chain
  • cc-freq: A classifier chain with a label order sorted by label frequency (frequent to rare) in the train set
  • cc-rare: A classifier chain with a label order sorted by label frequency (rare to frequent) in the train set
  • cc-rand: A classifier chain with a random label order
  • br: A binary relevance model
example: -m "dc,br"
yes
--validation <int> -v Size of validation set. The first XX% of the train set will be used for validating the model. If the parameter is not set, the test set will be used for evaluation. Example: --validation 20 The frist 20% will be used for evaluation, the last 80% for training. (default: 0) no
--max_depth <int> -d Max depth of each XGBoost multilabel tree (default: 10) no
--num_rounds <int> -r Number of boosting rounds of each XGBoost model (default: 10) no
--chain_length <int> -c Length of the chain. Represents number of labeling-rounds. Each round builds a new XGBoost model that will predict a single label per instance (default: num_labels) no
--split <int> -s Index of split method used for building the trees. Available options:
  • maxGain: 1
  • maxWeight: 2
  • sumGain: 3
  • sumWeight: 4
  • maxAbsGain: 5
  • sumAbsGain: 6
(default: 1)
no
--parameters <string> -p XGBoost parameters used for each model in the chain. Example: -p "{'silent':1, 'eta':0.1}" (default: {}) no
--features_to_transform <string> -t A list of all features in the dataset that have to be encoded. XGBoost can only process numerical features. Use this parameter to encode categorical features. Example: -t "featureA,featureB" no
--output_extra -o Write extended log and json files (default: True) no

Example

We train two models, the dynamic chain and a binary relevance model, on a dataset called emotions with 6 labels. So we specify the models with -m "dc, br" and the dataset with -f "emotions". Additionally we place the files for training and testing into the datasets directory:

project
│   README.md
│   train_dcc.py   
│
└───datasets
│   │   emotions-train.arff
│   │   emotions-test.arff
│   
└───XGBoost_ML
    │   ...

The dcc model should build a full chain with 6 models, so we use -l 6. All XGBoost models, also the one for binary relevance, should train for 100 rounds with a maximum tree depth of 10 and a step size of 0.1. Therefore we add -p "{'eta':0.1}" -r 100 -d 10

The full command to train and evaluate both models is:

 train_dcc.py -p "{'eta':0.1}" -f "emotions" -l 6 -r 100 -d 10 -c 6 -m 'dcc, br'
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022