Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Overview

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Figure: Example visualization of the method and baseline as a spectogram

This is the implementation of our Project for the course "Deep Learning: Architectures and Methods" by Prof. Christian Kersting from the Artificial Intelligence and Machine Learning Lab at the Technical University of Darmstadt in the summer semester 2021.

In the field of audio signal processing, Super-Resolution is one of the most relevant topics. The motivation is to reconstruct high- quality audio from low-quality signals. From a practical perspective, the technique has applications in telephony or generally in applications in which audio is transmitted and has to be compressed accordingly. Other applications are the processing of ancient recordings, for example old sound recordings of music, speech or videos. First approaches of the combination of machine learning and audio signal processing lead to promising results and outperform standard techniques. Accordingly the scope of the project was to reimplement the paper Temporal FiLM: Capturing Long-Range SequenceDependencies with Feature-Wise Modulation by Birnbaum et al. in PyTorch, reproduce the results and extend them further to the music domain.

This repository contains everything needed to prepare the data sets, train the model and create final evaluation and visualization of the results. We also provide the weights of the models to reproduce our reported results.

Installation

This project was originally developed with Python 3.8, PyTorch 1.7, and CUDA 11.0. The training requires at least one NVIDIA GeForce GTX 980 (4GB memory).

  • Create conda environment:
conda create --name audiosr
source activate audiosr
conda install PYTORCH torchvision cudatoolkit=11.0 -c pytorch
  • Install the dependencies:
pip install -r requirements.txt

Dataset preparation

To reproduce the results shown below tha datasets have to be prepared. This repo includes scripts to prepare the following dataset:

VCTK preparation

  • run prep_dataset.py from ./datasets to create a h5 container of a specified input.
  • to reproduce results prepare the following h5 files:
python prep_dataset.py \
  --file-list vctk/speaker1/speaker1-train-files.txt \
  --in-dir ./VCTK-Corpus/wav48/p225/ \
  --out vctk-speaker1-train.4.16000.8192.4096.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 4096 \
  --interpolate \
  --low-pass
python prep_dataset.py \
  --file-list vctk/speaker1/speaker1-val-files.txt \
  --in-dir ./VCTK-Corpus/wav48/p225/ \
  --out vctk-speaker1-val.4.16000.8192.4096.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 4096 \
  --interpolate \
  --low-pass

GTZAN preparation

  • run prep_dataset.py from ./datasets to create a h5 container of a specified input.
  • to reproduce results prepare the following h5 files:
python prep_dataset.py \
  --file-list gtzan/blues_wav_list_train.txt \
  --in-dir gtzan/data/genres/blues/ \
  --out blues-train.4.22000.8192.16384.h5 \
  --scale 4 \
  --sr 22000 \
  --dimension 8192 \
  --stride 16384 \
  --interpolate \
  --low-pass
python prep_dataset.py \
  --file-list gtzan/blues_wav_list_val.txt \
  --in-dir gtzan/data/genres/blues/ \
  --out blues-val.4.22000.8192.16384.h5 \
  --scale 4 \
  --sr 22000 \
  --dimension 8192 \
  --stride 16384 \
  --interpolate \
  --low-pass

Piano dataset preparation

python prep_piano.py \
  --file-list data/music_train.npy \
  --out piano-train.4.16000.8192.131072.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 131072 \
  --interpolate \
  --low-pass
python prep_piano.py \
  --file-list data/music_valid.npy \
  --out piano-val.4.16000.8192.131072.h5 \
  --scale 4 \
  --sr 16000 \
  --dimension 8192 \
  --stride 131072 \
  --interpolate \
  --low-pass

Notes:

  • the --in-dir argument has to be adapted to the respective dataset location
  • The dimension parameter and sampling rate define the absolute length of a patch (dim/sr = length patch)

Model

Generally, there are three main models in this implementation.

Baseline

On the one hand the b-spline interpolation which serves as the baseline and can be found in the data loader in prep_dataset.py.

Model

On the other hand two neural networks whose implementation can be found in the /models/ folder. In a first step a model was implemented which uses a batchnorm layer instead of the later used TFILM layer. This is implemented in audiounet.py. The final model, which is also used in the paper, can be found in tfilmunet.py.

Train Model

To run the trainings use the following commands and change the dataset root the corresponding domain.

python train.py \
  --dataset-root hereroottodataset! \
  --epochs 50 \
  --lr 3*10e-4 \
  --batch-size 16 

Evaluation

Save examples from inference

It is possible to evaluate any given wav-file with the inference.py script by invoking the --save-example flag and saving the results as wav-files and spectrogram plots. The script performs the following steps:

  • prepares all files in a provided list (--wave-file-list) and creates a low-res version and the baseline reconstruction
  • runs inference on the prepared files to create a super-resolution output
  • saves all results to the "examples" folder with the respective file names
  • saves spectrogram plots of all versions as pdf-files

Notes:

It is important to adapt the sampling parameter (--sr) which is set to 16000 by default. The sampling rate has to be the one of the original wav file. The scale (--scale) defines the down sampling factor which is set to 4 by default. Depending on which trained model is used for the inference the parameters --checkpoints-root and --checkpoint have to be specified accordingly.

To reproduce an example from our plot run the following command from the repo root directory (modify --checkpoints-root if necessary):

python inference.py \
  --save-example \
  --wave-file-list assets/save_wav_list.txt \
  --scale 4 \
  --sr 16000 \
  --checkpoint pretrained/vctk_speaker1_pretrained.pth

Results

Training Dataset Ratio BASELINE SNR (dB) BASELINE LSD (dB) METHOD SNR (dB) METHOD LSD (dB) Checkpoint
VTCK SingleSpeaker r = 4 15.6 5.4 16.6 3.2 Checkpoint
Piano r = 4 19.7 2.9 20.4 2.2 Checkpoint
GTZAN (Genre: Blues) r = 4 13.3 7.8 13.8 3.8 Checkpoint

Qualitative Examples

Here we provide a qualitative example per Dataset. These can be generated using inference.py

VTCK SingleSpeaker Piano GTZAN (Genre: Blues)
Low Resolution Low Resolution Low Resolution
Baseline Baseline Baseline
Method Method Method
High Resolution High Resolution High Resolution
Owner
Oliver Hahn
Master Thesis @VIsual Inference Lab | Grad Student @Technical University of Darmstadt
Oliver Hahn
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022