Package towards building Explainable Forecasting and Nowcasting Models with State-of-the-art Deep Neural Networks and Dynamic Factor Model on Time Series data sets with single line of code. Also, provides utilify facility for time-series signal similarities matching, and removing noise from timeseries signals.

Overview

DeepXF: Explainable Forecasting and Nowcasting with State-of-the-art Deep Neural Networks and Dynamic Factor Model

Also, verify TS signal similarities and Filtering of TS signals with single line of code at ease

deep-xf

pypi: https://pypi.org/project/deep_xf

images/logo.png

Related Blog: https://towardsdatascience.com/interpretable-nowcasting-with-deepxf-using-minimal-code-6b16a76ca52f

Related Blog: https://medium.com/analytics-vidhya/building-explainable-forecasting-models-with-state-of-the-art-deep-neural-networks-using-a-ad3fa5844fef

Related Blog: https://towardsdatascience.com/learning-similarities-between-biomedical-signals-with-deep-siamese-network-7684648e2ba0

Related Blog: https://ajay-arunachalam08.medium.com/denoising-ecg-signals-with-ensemble-of-filters-65919d15afe9

About deep-xf

DeepXF is an open source, low-code python library for forecasting and nowcasting tasks. DeepXF helps in designing complex forecasting and nowcasting models with built-in utility for time series data. One can automatically build interpretable deep forecasting and nowcasting models at ease with this simple, easy-to-use and low-code solution. It enables users to perform end-to-end Proof-Of-Concept (POC) quickly and efficiently. One can build models based on deep neural network such as Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional RNN/LSTM/GRU (BiRNN/BiLSTM/BiGRU), Spiking Neural Network (SNN), Graph Neural Network (GNN), Transformers, Generative Adversarial Network (GAN), Convolutional Neural Network (CNN), and others. It also provides facility to build nowcast model using Dynamic Factor Model.

images/representation.png

DeepXF is conceived and developed by Ajay Arunachalam - https://www.linkedin.com/in/ajay-arunachalam-4744581a/

Please Note:- This is still by large a work in progress, so always open to your comments and things you feel to be included. Also, if you want to be a contributor, you are always most welcome. The RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU are already part of the initial version roll-out, while the latter ones (SNN, GNN, Transformers, GAN, CNN, etc.) are work in progress, and will be added soon once the testing is completed.

The library provides (not limited too):-

  • Exploratory Data Analysis with services like profiling, filtering outliers, univariate/multivariate plots, plotly interactive plots, rolling window plots, detecting peaks, etc.
  • Data Preprocessing for Time-series data with services like finding missing, imputing missing, date-time extraction, single timestamp generation, removing unwanted features, etc.
  • Descriptive statistics for the provided time-series data, Normality evaluation, etc.
  • Feature engineering with services like generating time lags, date-time features, one-hot encoding, date-time cyclic features, etc.
  • Finding similarity between homogeneous time-series inputs with Siamese Neural Networks.
  • Denoising time-series input signals.
  • Building Deep Forecasting Model with hyperparameters tuning and leveraging available computational resource (CPU/GPU).
  • Forecasting model performance evaluation with several key metrics
  • Game theory based method to interpret forecasting model results.
  • Building Nowcasting model with Expectation–maximization algorithm
  • Explainable Nowcasting

Who can use deep-xf?

DeepXF is an open-source library ideal for:-

  • Citizen Data Scientists who prefer a low code solution.
  • Experienced Data Scientists who want to increase model accuracy and improve productivity.
  • Data Science Professionals and Consultants involved in building proof-of-concept (poc) projects.
  • Researchers for quick poc prototyping and testing.
  • Students and Teachers.
  • ML Enthusiasts.
  • Learners.

Requirements

  • Python 3.6.x
  • torch[>=1.4.0]
  • NumPy[>=1.9.0]
  • SciPy[>=0.14.0]
  • Scikit-learn[>=0.16]
  • statsmodels[0.12.2]
  • Pandas[>=0.23.0]
  • Matplotlib
  • Seaborn[0.9.0]
  • tqdm
  • shap
  • keras[2.6.0]
  • pandas_profiling[3.1.0]
  • py-ecg-detectors

Quickly Setup package with automation scripts

sudo bash setup.sh

Installation

Using pip:

pip install deep-xf or pip3 install deep-xf or pip install git+git://github.com/ajayarunachalam/Deep_XF
$ git clone https://github.com/ajayarunachalam/Deep_XF
$ cd Deep_XF
$ python setup.py install

Using notebook:

!pip install deep-xf

Using conda:

$ conda install -c conda-forge deep-xf

Getting started

  • FORECASTING DEMO:
# set model config
select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='rnn', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=1)

# select hyperparameters
hidden_dim, layer_dim, batch_size, dropout, n_epochs, learning_rate, weight_decay = Forecast.hyperparameter_config(hidden_dim=64,                                                                                                                                                               layer_dim = 3, batch_size=64, dropout = 0.2,                                                                                                                                    n_epochs = 30, learning_rate = 1e-3, weight_decay = 1e-6)

# train model
opt, scaler = Forecast.train(df=df_full_features, target_col='value', split_ratio=0.2, select_model=select_model,              select_scaler=select_scaler, forecast_window=forecast_window, batch_size=batch_size, hidden_dim=hidden_dim, layer_dim=layer_dim,dropout=dropout, n_epochs=n_epochs, learning_rate=learning_rate, weight_decay=weight_decay)

# forecast for user selected period
forecasted_data, ff_full_features, ff_full_features_ = Forecast.forecast(model_df, ts, fc, opt, scaler, period=25, fq='1h', select_scaler=select_scaler,)

# interpret the forecasting result
Helper.explainable_forecast(df_full_features, ff_full_features_, fc, specific_prediction_sample_to_explain=df_full_features.shape[0]+2, input_label_index_value=0, num_labels=1)

Example Illustration

__author__ = 'Ajay Arunachalam'
__version__ = '0.0.1'
__date__ = '7.11.2021'


    from deep_xf.main import *
    from deep_xf.dpp import *
    from deep_xf.forecast_ml import *
    from deep_xf.forecast_ml_extension import *
    from deep_xf.stats import *
    from deep_xf.utility import *
    from deep_xf.denoise import *
    from deep_xf.similarity import *
    df = pd.read_csv('../data/PJME_hourly.csv')
    print(df.shape)
    print(df.columns)
    # set variables
    ts, fc = Forecast.set_variable(ts='Datetime', fc='PJME_MW')
    # get variables
    model_df, orig_df = Helper.get_variable(df, ts, fc)
    # EDA
    ExploratoryDataAnalysis.plot_dataset(df=model_df,fc=fc, title='PJM East (PJME) Region: estimated energy consumption in Megawatts (MW)')
    # Feature Engg
    df_full_features = Features.generate_date_time_features_hour(model_df, ['hour','month','day','day_of_week','week_of_year'])
    # generating cyclic features
    df_full_features = Features.generate_cyclic_features(df_full_features, 'hour', 24, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'day_of_week', 7, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'month', 12, 1)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'week_of_year', 52, 0)
    # holiday feature
    df_full_features = Features.generate_other_related_features(df=df_full_features)
    select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='rnn', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=1)

    hidden_dim, layer_dim, batch_size, dropout, n_epochs, learning_rate, weight_decay = Forecast.hyperparameter_config(hidden_dim=64,                                                                                                                                                               layer_dim = 3, batch_size=64, dropout = 0.2,                                                                                                                                    n_epochs = 30, learning_rate = 1e-3, weight_decay = 1e-6)

    opt, scaler = Forecast.train(df=df_full_features, target_col='value', split_ratio=0.2, select_model=select_model,              select_scaler=select_scaler, forecast_window=forecast_window, batch_size=batch_size, hidden_dim=hidden_dim, layer_dim=layer_dim,dropout=dropout, n_epochs=n_epochs, learning_rate=learning_rate, weight_decay=weight_decay)

    forecasted_data, ff_full_features, ff_full_features_ = Forecast.forecast(model_df, ts, fc, opt, scaler, period=25, fq='1h', select_scaler=select_scaler,)

    Helper.explainable_forecast(df_full_features, ff_full_features_, fc, specific_prediction_sample_to_explain=df.shape[0]+1, input_label_index_value=0, num_labels=1)
  • NOWCASTING DEMO:
# set model config
select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='em', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=5)

# nowcast for user selected window
nowcast_full_data, nowcast_pred_data = EMModel.nowcast(df_full_features, ts, fc, period=5, fq='1h', forecast_window=forecast_window,    select_model=select_model)

# interpret the nowcasting model result
EMModel.explainable_nowcast(df_full_features, nowcast_pred_data, fc, specific_prediction_sample_to_explain=df.shape[0]+2, input_label_index_value=0, num_labels=1)

Example Illustration

__author__ = 'Ajay Arunachalam'
__version__ = '0.0.1'
__date__ = '7.11.2021'

    from deep_xf.main import *
    from deep_xf.dpp import *
    from deep_xf.forecast_ml import *
    from deep_xf.forecast_ml_extension import *
    from deep_xf.stats import *
    from deep_xf.utility import *
    from deep_xf.denoise import *
    from deep_xf.similarity import *
    df = pd.read_csv('./data/PJME_hourly.csv')
    # set variables
    ts, fc = Forecast.set_variable(ts='Datetime', fc='PJME_MW')
    # get variables
    model_df, orig_df = Helper.get_variable(df, ts, fc)
    select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='em', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=5)
    df_full_features = Features.generate_date_time_features_hour(model_df, ['hour','month','day','day_of_week','week_of_year'])
    # generating cyclic features
    df_full_features = Features.generate_cyclic_features(df_full_features, 'hour', 24, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'day_of_week', 7, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'month', 12, 1)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'week_of_year', 52, 0)
    df_full_features = Features.generate_other_related_features(df=df_full_features)
    nowcast_full_data, nowcast_pred_data = EMModel.nowcast(df_full_features, ts, fc, period=5, fq='1h', forecast_window=forecast_window, select_model=select_model)
    EMModel.explainable_nowcast(df_full_features, nowcast_pred_data, fc, specific_prediction_sample_to_explain=df.shape[0]+3, input_label_index_value=0, num_labels=1)

Tested Demo

## Important Links

License

Copyright 2021-2022 Ajay Arunachalam <[email protected]>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. © 2021 GitHub, Inc.

Owner
AjayAru
Data Science Manager; Certified Scrum Master; AWS Certified Cloud Solution Architect; AWS Certified Machine Learning Specialist
AjayAru
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022