Code for the paper Task Agnostic Morphology Evolution.

Overview

Task-Agnostic Morphology Optimization

This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Abbeel, and Lerrel Pinto published at ICLR 2021.

The code has been cleaned up to make it easier to use. An older version of the code was made available with the ICLR submission here.

Setup

The code was tested and used on Ubuntu 20.04. Our baseline implementations use taskset, an ubuntu program for setting CPU affinity. You need taskset to run some of the experiments, and the code will fail without it.

Install the conda environment using the provided file via the command conda env create -f environment.yml. Given this project involves only state based RL, the environment does not install CUDA and the code is setup to use CPU. Activate the environment with conda activate morph_opt.

Next, make sure to install the optimal_agents package by running pip install -e . from the github directory. This will use the setup.py file.

The code is built on top of Stable Baselines 3, Pytorch, and Pytorch Geometric. The exact specified version of stable baselines 3 is required.

Running Experiments

Currently, configs for the 2D experiments have been pushed to the repo. I'm working on pushing more config files that form the basis for the experiments run. To run large scale experiments for the publication, we used additional AWS tools.

Evolution experiments can be run using the train_ea.py script found in the scripts directory. Below are example commands for running different morphology evolution algorithms:

python scripts/train_ea.py -p configs/locomotion2d/2d_tame.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_tamr.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_nge_no_pruning.yaml

python scripts/train_ea.py -p configs/locomotion2d/2d_nge_pruning.yaml

After running evolution to discover good morphologies, you can evaluate them using PPO via the provided eval configs.

python scripts/train_rl.py -p configs/locomotion2d/2d_eval.yaml

Note that you have to edit the config file to include either the path to the optimized morphology or a predefined type like random2d or cheetah. We evaluate all morphologies across a number of different environments. The provided configuration file runs evaluations for just one.

To better keep track of the experiment names, you can edit the name field in the config files.

By default, experiments are saved to the data directory. This can be changed by providing an output location with the -o flag.

Rendering, Testing, and Plotting

See the test scripts for viewing agents after they have been trained.

For plotting results like those in the paper, use the plotting scripts. Note that to use the plotting scripts correctly, a specific directory structure is required. Details for this can be found in optimal_agents/utils/plotter.py.

Citing

If you use this code. Please cite the paper.

Owner
Joey Hejna
Joey Hejna
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023