Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

Overview
SMOP is Small Matlab and Octave to Python compiler.
SMOP translates matlab to python. Despite obvious similarities between matlab and numeric python, there are enough differences to make manual translation infeasible in real life. SMOP generates human-readable python, which also appears to be faster than octave. Just how fast? Timing results for "Moving furniture" are shown in Table 1. It seems that for this program, translation to python resulted in about two times speedup, and additional two times speedup was achieved by compiling SMOP run-time library runtime.py to C, using cython. This pseudo-benchmark measures scalar performance, and my interpretation is that scalar computations are of less interest to the octave team.
octave-3.8.1 190 ms
smop+python-2.7 80 ms
smop+python-2.7+cython-0.20.1 40 ms
Table 1. SMOP performance  

News

October 15, 2014
Version 0.26.3 is available for beta testing. Next version 0.27 is planned to compile octave scripts library, which contains over 120 KLOC in almost 1,000 matlab files. There are 13 compilation errors with smop 0.26.3 .

Installation

  • Network installation is the best method if you just want it to run the example:

    $ easy_install smop --user
    
  • Install from the sources if you are behind a firewall:

    $ tar zxvf smop.tar.gz
    $ cd smop
    $ python setup.py install --user
    
  • Fork github repository if you need the latest fixes.

  • Finally, it is possible to use smop without doing the installation, but only if you already installed the dependences -- numpy and networkx:

    $ tar zxvf smop.tar.gz
    $ cd smop/smop
    $ python main.py solver.m
    $ python solver.py
    

Working example

We will translate solver.m to present a sample of smop features. The program was borrowed from the matlab programming competition in 2004 (Moving Furniture).To the left is solver.m. To the right is a.py --- its translation to python. Though only 30 lines long, this example shows many of the complexities of converting matlab code to python.

01   function mv = solver(ai,af,w)  01 def solver_(ai,af,w,nargout=1):
02   nBlocks = max(ai(:));          02     nBlocks=max_(ai[:])
03   [m,n] = size(ai);              03     m,n=size_(ai,nargout=2)
02 Matlab uses round brackets both for array indexing and for function calls. To figure out which is which, SMOP computes local use-def information, and then applies the following rule: undefined names are functions, while defined are arrays.
03 Matlab function size returns variable number of return values, which corresponds to returning a tuple in python. Since python functions are unaware of the expected number of return values, their number must be explicitly passed in nargout.
04   I = [0  1  0 -1];              04     I=matlabarray([0,1,0,- 1])
05   J = [1  0 -1  0];              05     J=matlabarray([1,0,- 1,0])
06   a = ai;                        06     a=copy_(ai)
07   mv = [];                       07     mv=matlabarray([])
04 Matlab array indexing starts with one; python indexing starts with zero. New class matlabarray derives from ndarray, but exposes matlab array behaviour. For example, matlabarray instances always have at least two dimensions -- the shape of I and J is [1 4].
06 Matlab array assignment implies copying; python assignment implies data sharing. We use explicit copy here.
07 Empty matlabarray object is created, and then extended at line 28. Extending arrays by out-of-bounds assignment is deprecated in matlab, but is widely used never the less. Python ndarray can't be resized except in some special cases. Instances of matlabarray can be resized except where it is too expensive.
08   while ~isequal(af,a)           08     while not isequal_(af,a):
09     bid = ceil(rand*nBlocks);    09         bid=ceil_(rand_() * nBlocks)
10     [i,j] = find(a==bid);        10         i,j=find_(a == bid,nargout=2)
11     r = ceil(rand*4);            11         r=ceil_(rand_() * 4)
12     ni = i + I(r);               12         ni=i + I[r]
13     nj = j + J(r);               13         nj=j + J[r]
09 Matlab functions of zero arguments, such as rand, can be used without parentheses. In python, parentheses are required. To detect such cases, used but undefined variables are assumed to be functions.
10 The expected number of return values from the matlab function find is explicitly passed in nargout.
12 Variables I and J contain instances of the new class matlabarray, which among other features uses one based array indexing.
14     if (ni<1) || (ni>m) ||       14         if (ni < 1) or (ni > m) or
               (nj<1) || (nj>n)                            (nj < 1) or (nj > n):
15         continue                 15             continue
16     end                          16
17     if a(ni,nj)>0                17         if a[ni,nj] > 0:
18         continue                 18           continue
19     end                          19
20     [ti,tj] = find(af==bid);     20         ti,tj=find_(af == bid,nargout=2)
21     d = (ti-i)^2 + (tj-j)^2;     21         d=(ti - i) ** 2 + (tj - j) ** 2
22     dn = (ti-ni)^2 + (tj-nj)^2;  22         dn=(ti - ni) ** 2 + (tj - nj) ** 2
23     if (d<dn) && (rand>0.05)     23         if (d < dn) and (rand_() > 0.05):
24         continue                 24             continue
25     end                          25
26     a(ni,nj) = bid;              26         a[ni,nj]=bid
27     a(i,j) = 0;                  27         a[i,j]=0
28     mv(end+1,[1 2]) = [bid r];   28         mv[mv.shape[0] + 1,[1,2]]=[bid,r]
29  end                             29
30                                  30     return mv

Implementation status

Random remarks

With less than five thousands lines of python code
SMOP does not pretend to compete with such polished products as matlab or octave. Yet, it is not a toy. There is an attempt to follow the original matlab semantics as close as possible. Matlab language definition (never published afaik) is full of dark corners, and SMOP tries to follow matlab as precisely as possible.
There is a price, too.
The generated sources are matlabic, rather than pythonic, which means that library maintainers must be fluent in both languages, and the old development environment must be kept around.
Should the generated program be pythonic or matlabic?

For example should array indexing start with zero (pythonic) or with one (matlabic)?

I beleive now that some matlabic accent is unavoidable in the generated python sources. Imagine matlab program is using regular expressions, matlab style. We are not going to translate them to python style, and that code will remain forever as a reminder of the program's matlab origin.

Another example. Matlab code opens a file; fopen returns -1 on error. Pythonic code would raise exception, but we are not going to do that. Instead, we will live with the accent, and smop takes this to the extreme --- the matlab program remains mostly unchanged.

It turns out that generating matlabic` allows for moving much of the project complexity out of the compiler (which is already complicated enough) and into the runtime library, where there is almost no interaction between the library parts.

Which one is faster --- python or octave? I don't know.
Doing reliable performance measurements is notoriously hard, and is of low priority for me now. Instead, I wrote a simple driver go.m and go.py and rewrote rand so that python and octave versions run the same code. Then I ran the above example on my laptop. The results are twice as fast for the python version. What does it mean? Probably nothing. YMMV.
ai = zeros(10,10);
af = ai;

ai(1,1)=2;
ai(2,2)=3;
ai(3,3)=4;
ai(4,4)=5;
ai(5,5)=1;

af(9,9)=1;
af(8,8)=2;
af(7,7)=3;
af(6,6)=4;
af(10,10)=5;

tic;
mv = solver(ai,af,0);
toc

Running the test suite:

$ cd smop
$ make check
$ make test

Command-line options

[email protected] ~/smop-github/smop $ python main.py -h
SMOP compiler version 0.25.1
Usage: smop [options] file-list
    Options:
    -V --version
    -X --exclude=FILES      Ignore files listed in comma-separated list FILES
    -d --dot=REGEX          For functions whose names match REGEX, save debugging
                            information in "dot" format (see www.graphviz.org).
                            You need an installation of graphviz to use --dot
                            option.  Use "dot" utility to create a pdf file.
                            For example:
                                $ python main.py fastsolver.m -d "solver|cbest"
                                $ dot -Tpdf -o resolve_solver.pdf resolve_solver.dot
    -h --help
    -o --output=FILENAME    By default create file named a.py
    -o- --output=-          Use standard output
    -s --strict             Stop on the first error
    -v --verbose

Owner
Tom Xu
Software Engineer, AI/ML SaaS Advocate, Scientific Simulations and Optimizations.
Tom Xu
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022