Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

Overview

Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library stable-baselines3 to derive a control policy that maximizes melt pool depth consistency. drl_am

Simulation Framework

The Repeated Usage of Stored Line Solutions (RUSLS) method proposed by Wolfer et al. is used to simulate the temperature dynamics in this work. More detail can be found in the following paper:

  • Fast solution strategy for transient heat conduction for arbitrary scan paths in additive manufacturing, Additive Manufacturing, Volume 30, 2019 (link)

Prerequisites

The following packages are required in order to run the associated code:

  • gym==0.17.3
  • torch==1.5.0
  • stable_baselines3==0.7.0
  • numba==0.50.1

These packages can be installed independently, or all at once by running pip install -r requirements.txt. We recommend that these packages are installed in a new conda environment to avoid clashes with existing package installations. Instructions on defining a new conda environment can be found here.

Usage

The overall workflow for this project first defines a gym environment based on the desired scan path, then performs Proximal Policy Optimization to derive a suitable control policy based on the environment. This is done through the following:

Overview

  • EagarTsaiModel.py: implements the RUSLS solution to the Rosenthal equation, as proposed by Wolfer et al.
  • power_square_gym.py, power_triangle_gym.py, velocity_square_gym.py, velocity_triangle_gym.py: Defines custom gym environments for the respective scan paths and control variables. square is used as shorthand for the predefined horizontal cross-hatching path and triangle is used as shorthand for the predefined concentric triangular path.
  • RL_learn_square.py, RL_learn_triangle.py performs Proximal Policy Optimization on the respective scan paths, with command line arguments to change which control parameter is varied.
  • evaluate_learned_policy.py runs a derived control policy on a specific environment. The environment is specified using command line arguments detailed below.

Testing a trained model

To test a trained model on a specific combination of scan path and control parameter, enter this command:

python evaluate_learned_policy.py --path [scan_path] --param [parameter]

Note: [scan_path] should be replaced by square for the horizontal cross-hatching scan path and triangle for the concentric triangular path. [parameter] should be replaced by power to specify power as a control parameter, and velocity to specify velocity as a control parameter.

Upon running this command, you will be prompted to enter the path to the .zip file for the trained model.

Once the evaluation is complete, the results are stored in the folder results/[scan_path]_[parameter]_control/. This folder will contain plots of the variation of the melt depth and control parameters over time, as well as their raw values for later analysis.

Pre-trained models for each of the four possible combinations of scan path and control parameter can be found in pretrained_models.

Training a new model

In order to train a new model based on the predefined horizontal cross-hatching scan path, enter the command:

python RL_learn_square.py --param [parameter]

Here, [parameter] should be replaced by the control parameter desired. The possible options are power and velocity.

The process is similar for the predefined concentric triangular scan path. To train a new model, enter the command:

python RL_learn_triangle.py --param [parameter]

Again, [parameter] should be replaced by the control parameter desired. The possible options are power and velocity.

During training, intermediate model checkpoints will be saved at

training_checkpoints/ppo_[scan_path]_[parameter]/best_model.zip

At the conclusion of training, the finished model is stored at

trained_models/ppo_[scan_path]_[parameter].zip

Defining a custom domain

Changing the powder bed features

In order to define a custom domain for use with a different problem configuration, the EagarTsaiModel.py file should be edited directly. Within the EagarTsai() class instantiation, the thermodynamic properties and domain dimensions can be specified. Additionally, the resolution and boundary conditions can be provided as arguments to the EagarTsai class. bc = 'flux' and bc = 'temp' implements an adiabatic and constant temperature boundary condition respectively.

Changing the scan path

A new scan path can be defined by creating a new custom gym environment, and writing a custom step() function to represent the desired scan path, similar to the [parameter]_[scan_path]_gym.py scripts in this repository. Considerations for both how the laser moves during a single segment and the placement of each segment within the overall path should be described in this function. More detail on the gym framework for defining custom environments can be found here.

Monitoring the training process with TensorBoard

Tensorboard provides resources for monitoring various metrics of the PPO training process, and can be installed using pip install tensorboard. To open the tensorboard dashboard, enter the command:

tensorboard --log_dir ./tensorboard_logs/ppo_[scan_path]_[parameter]/ppo_[scan_path]_[parameter]_[run_ID]

Tensorboard log files are periodically saved during training, with information on cumulative reward as well as various loss metrics.

Owner
BaratiLab
BaratiLab
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022