An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Overview

code GPLv3 license release

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by providing an easy to use API, i.e., OWLOOP.

Although OWL and OOP paradigms have similar structure, there are some key differences between them; see this W3C publication for more details about the differences. Nonetheless, it is possible to use OWL along with its reasoning capabilities within applications developed in an OOP paradigm, by using the classic OWL-API. But, the usage of the classic OWL-API leaves your project with lots of boilerplate code. Therefore, the OWLOOP-API (built on top of OWL-API), reduces boilerplate code by enabling interaction with 'OWL entities' (i.e, Concept (also known as Class), Individual, Object property and Data property) as objects within the OOP paradigm. These objects are termed as Descriptors (i.e., ClassDescriptor, IndividualDescriptor, ObjectPropertyDescriptor and DataPropertyDescriptor). By using descriptor(s), OWLOOP synchronizes axioms (OWL2-DL axioms) between the OOP paradigm (your application's code) and the OWL paradigm (OWL ontology XML/RDF file(s)).

Example of a real-world system that used OWLOOP API:

This video (link) shows a smart home system recognising human activities. The system uses a network of multiple ontologies to recognise specific activities. The network of multiple ontologies was developed using OWLOOP API.

Table of Contents

  1. Reference to the publication
  2. Getting Started with OWLOOP
  3. Overview of important Java-classes (in OWLOOP) and their methods
  4. Wiki documentation
  5. Some details about OWLOOP dependencies
  6. Developers' message
  7. License

1. Reference to the Publication

OWLOOP API is a peer reviewed software published by Elsevier in its journal SoftwareX. The publication presents in detail the motivation for developing OWLOOP. Furthermore, it describes the design of the API and presents the API's usage with illustrative examples.

Please, cite this work as:

@article{OWLOOP-2021,
  title = {{OWLOOP}: {A} Modular {API} to Describe {OWL} Axioms in {OOP} Objects Hierarchies},
  author = {Luca Buoncompagni and Syed Yusha Kareem and Fulvio Mastrogiovanni},
  journal = {SoftwareX},
  volume = {17},
  pages = {100952},
  year = {2022},
  issn = {2352-7110},
  doi = {https://doi.org/10.1016/j.softx.2021.100952},
  url = {https://www.sciencedirect.com/science/article/pii/S2352711021001801}
}

2. Getting Started with OWLOOP

2.1. Prerequisites for your Operating System

2.2. Add OWLOOP dependencies to your project

First Step: Create a new project with Java as the programming language and Gradle as the build tool.

Second Step: Create a directory called lib and place the OWLOOP related jar files in it.

Third Step: Modify your build.gradle file, as follows:

  • Add flatDir { dirs 'lib' } within the repositories{} section, as shown below:
repositories {
    mavenCentral()

    flatDir {
        dirs 'lib'
    }
}
  • Add the required dependencies (i.e., owloop, amor and pellet), as shown below 👇
dependencies {
    // testCompile group: 'junit', name: 'junit', version: '4.12'

    implementation 'it.emarolab.amor:amor:2.2'
    implementation 'it.emarolab.owloop:owloop:2.1'
    implementation group: 'com.github.galigator.openllet', name: 'openllet-owlapi', version: '2.5.1'
}

It is normal that a warning like SLF4J: Class path contains multiple SLF4J bindings occurs.

Final Step: You are now ready to create/use OWL ontologies in your project/application 🔥 , by using OWLOOP descriptors in your code!.

2.3. Use OWLOOP in your project

  • This is an example code that shows how to create an OWL file and add axioms to it.
import it.emarolab.amor.owlInterface.OWLReferences;
import it.emarolab.owloop.core.Axiom;
import it.emarolab.owloop.descriptor.utility.classDescriptor.FullClassDesc;
import it.emarolab.owloop.descriptor.utility.individualDescriptor.FullIndividualDesc;
import it.emarolab.owloop.descriptor.utility.objectPropertyDescriptor.FullObjectPropertyDesc;

public class someClassInMyProject {

    public static void main(String[] args) {

        // Disabling 'internal logs' (so that our console is clean)
        Axiom.Descriptor.OntologyReference.activateAMORlogging(false);

        // Creating an object that is 'a reference to an ontology'
        OWLReferences ontoRef = Axiom.Descriptor.OntologyReference.newOWLReferencesCreatedWithPellet(
                "robotAtHomeOntology",
                "src/main/resources/robotAtHomeOntology.owl",
                "http://www.semanticweb.org/robotAtHomeOntology",
                true
        );

        // Creating some 'classes in the ontology'
        FullClassDesc location = new FullClassDesc("LOCATION", ontoRef);
        location.addSubClass("CORRIDOR");
        location.addSubClass("ROOM");
        location.writeAxioms();
        FullClassDesc robot = new FullClassDesc("ROBOT", ontoRef);
        robot.addDisjointClass("LOCATION");
        robot.writeAxioms();

        // Creating some 'object properties in the ontology'
        FullObjectPropertyDesc isIn = new FullObjectPropertyDesc("isIn", ontoRef);
        isIn.addDomainClassRestriction("ROBOT");
        isIn.addRangeClassRestriction("LOCATION");
        isIn.writeAxioms();
        FullObjectPropertyDesc isLinkedTo = new FullObjectPropertyDesc("isLinkedTo", ontoRef);
        isLinkedTo.addDomainClassRestriction("CORRIDOR");
        isLinkedTo.addRangeClassRestriction("ROOM");
        isLinkedTo.writeAxioms();

        // Creating some 'individuals in the ontology'
        FullIndividualDesc corridor1 = new FullIndividualDesc("Corridor1", ontoRef);
        corridor1.addObject("isLinkedTo", "Room1");
        corridor1.addObject("isLinkedTo", "Room2");
        corridor1.writeAxioms();
        FullIndividualDesc robot1 = new FullIndividualDesc("Robot1", ontoRef);
        robot1.addObject("isIn", "Room1");
        robot1.writeAxioms();
        
        // Saving axioms from in-memory ontology to the the OWL file located in 'src/main/resources'
        ontoRef.saveOntology();
    }
}
  • After running the above code, the OWL file robotAtHomeOntology gets saved in src/main/resources. We can open the OWL file in Protege and view the ontology.

3. Overview of important Java-classes (in OWLOOP) and their methods

Java-classes methods
Path: OWLOOP/src/.../owloop/core/

This path contains, all core Java-classes. Among them, one in particular is immediately useful, i.e., OntologyReference. It allows to create/load/save an OWL ontology file.
The following method allows to enable/disable display of internal logging:

activateAMORlogging()
The following methods allow to instantiate an object of the Java-class OWLReferences:

newOWLReferencesCreatedWithPellet()
newOWLReferencesFromFileWithPellet()
newOWLReferencesFromWebWithPellet()
The object of Java-class OWLReferences, offers the following methods:

#0000FFsaveOntology()
#0000FFsynchronizeReasoner()
#0000FFload() // is hidden and used internally
Path: OWLOOP/src/.../owloop/descriptor/utility/

This path contains the directories that contain all Java-classes that are (as we call them) descriptors. The directories are the following:
/classDescriptor
/dataPropertyDescriptor
/objectPropertyDescriptor
/individualDescriptor.
The object of a Descriptor, offers the following methods:

#f03c15add...()
#f03c15remove...()
#f03c15build...()
#f03c15get...()
#f03c15query...()
#f03c15writeAxioms()
#f03c15readAxioms()
#f03c15reason()
#f03c15saveOntology()

4. Wiki documentation

The OWLOOP API's core aspects are described in this repository's wiki:

  • Structure of the OWLOOP API project.

  • JavaDoc of the OWLOOP API project.

  • What is a Descriptor in OWLOOP?

  • Code examples that show how to:

    • Construct a type of descriptor.

    • Add axioms to an ontology by using descriptors.

    • Infer some knowledge (i.e., axioms) from the axioms already present within an ontology by using descriptors. This example also highlights the use of the build() method.

    • Remove axioms from an ontology by using descriptors.

5. Some details about OWLOOP dependencies

Please use Gradle as the build tool for your project, and include the following dependencies in your project's build.gradle file:

  • aMOR (latest release is amor-2.2): a Multi-Ontology Reference library is based on OWL-API and it provides helper functions to OWLOOP.
    • OWL-API: a Java API for creating, manipulating and serialising OWL Ontologies. We have included owlapi-distribution-5.0.5 within amor-2.2.
  • OWLOOP (latest release is owloop-2.2): an API that enables easy manipulation of OWL (Ontology Web Language) ontologies from within an OOP (Object Oriented Programming) paradigm.
    • Pellet: an open source OWL 2 DL reasoner. We have included openllet-owlapi-2.5.1 within owloop-2.2.

6. Developers' message

Feel free to contribute to OWLOOP by sharing your thoughts and ideas, raising issues (if found) and providing bug-fixes. For any information or support, please do not hesitate to contact us through this Github repository or by email.

Developed by [email protected] and [email protected] under the supervision of [email protected].

7. License

OWLOOP is under the license: GNU General Public License v3.0

You might also like...
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social learning coefficients and maximum velocity of the particle.

A programming language written with python
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

A general-purpose programming language, focused on simplicity, safety and stability.
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ranging from simulation engineering up to agent development, training and deployment.

A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Official repository for
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

Releases(2.1)
Owner
TheEngineRoom-UniGe
Human Robot Interaction and Artificial Intelligence Lab in Genoa, Italy.
TheEngineRoom-UniGe
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021