Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

Overview

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles

Dependency

  • ROS (tested with Kinetic and Melodic)
  • PCL

Install

Use the following commands to download and compile the package.

cd ~/catkin_ws/src
git clone https://github.com/jkk-research/urban_road_filter
catkin build urban_road_filter

Getting started

Cite & paper

If you use any of this code please consider citing the paper:


@Article{roadfilt2022horv,
    title = {Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles},
    author = {Horváth, Ernő and Pozna, Claudiu and Unger, Miklós},
    journal = {Sensors},
    volume = {22},
    year = {2022},
    number = {1},
    url = {https://www.mdpi.com/1424-8220/22/1/194},
    issn = {1424-8220},
    doi = {10.3390/s22010194}
}

Realated solutions

Videos and images

Comments
  • If the given dataset have a preprocessing?

    If the given dataset have a preprocessing?

    Thanks for your great work! I try to do some experiment on kitti dataset. But I found it does not have the same effect as yours. The blue marks, as shown in the following image, are false positive. I want to wonder if the given dataset have a preprocessing? img

    question 
    opened by LuYoKa 6
  • I need help

    I need help

    Hello, I follow the steps to generate this error. How should I solve it? Thanks Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:75: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/lidar_segmentation.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/lidar_segmentation.cpp.o] Error 4 make[2]: *** 正在等待未完成的任务.... c++: internal compiler error: 已杀死 (program cc1plus) Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:131: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/z_zero_method.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/z_zero_method.cpp.o] Error 4 c++: internal compiler error: 已杀死 (program cc1plus) Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:89: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/main.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/main.cpp.o] Error 4 CMakeFiles/Makefile2:2521: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/all' failed make[1]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/all] Error 2 Makefile:145: recipe for target 'all' failed make: *** [all] Error 2 Invoking "make -j8 -l8" failed

    question 
    opened by chaohe1998 2
  • Follow ROS naming conventions

    Follow ROS naming conventions

    • Naming ROS resources: http://wiki.ros.org/ROS/Patterns/Conventions
    • Package naming: https://www.ros.org/reps/rep-0144.html
    • Naming conventions for drivers: https://ros.org/reps/rep-0135.html
    • Parameter namespacing: http://wiki.ros.org/Parameter%20Server

    e.g. visualization_MarkerArray is not a valid topic name

    enhancement 
    opened by horverno 1
  • StarShapedSearch algorithm not functioning properly

    StarShapedSearch algorithm not functioning properly

    The "star shaped search" detection algorithm seems to function with reduced range and [by angle] only in the first quarter of its detection area (counter-clockwise / positive z angles from x-axis, right-handed coordinate-system).

    The images below show the output using only this algorithm (other detection methods, blind spot correction and output polygon simplification turned off).

    [red line = polygon connecting the detected points]

    2

    3

    opened by csaplaci 0
  • Semi-automated vector map building

    Semi-automated vector map building

    New feature:

    Based on the urban_road_filter output a semi-automated vector map building (e.g. lanelet2 / opendrive) in the global frame (e.g. map)

    (small help)

    enhancement feature 
    opened by horverno 1
Releases(paper)
Owner
JKK - Vehicle Industry Research Center
Széchenyi University's Research Center
JKK - Vehicle Industry Research Center
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022